
© 2021 http://delphihtmlcomponents.com

SQL Framework

3Contents

3

© 2021 http://delphihtmlcomponents.com

Table of Contents

Foreword 0

Part I Introduction 5

1 Supported Databases .. 5

2 Supported DAC ... 5

Part II Database schema 7

1 Loading schema ... 7

2 Accessing schema objects .. 7

3 Creating SQL script ... 8

4 Comparing schema objects ... 8

5 Creating triggers for autoincrement fields .. 9

6 Schema objects descriptions .. 9

7 Using schema in multithread enviroment ... 9

8 Schema serialization and deserialization ... 9

9 TDMField class .. 9

10 TDMTable class ... 11

Part III SQL Parsing 13

1 Database dialects .. 13

2 Class hierarchy .. 13

3 Query hierarchy .. 14

4 Parsing sample ... 14

5 Parsing errors and tolerant mode ... 14

6 Templates ... 14

Part IV SQL formatting 15

1 TSQLFormatter class ... 15

2 Generating formatted SQL .. 16

Part V SQL transforming 17

1 Transforming methods .. 17

2 Translating between dialects .. 17

Part VI SQL context and code completion 18

1 TSQLContext class .. 18

2 Using SQL context ... 19

3 TSQLHLEditor class ... 19

SQL Framework4

© 2021 http://delphihtmlcomponents.com

Part VII How To 21

1 Get token at source position .. 21

2 Add table field to query columns .. 21

3 Add condition to Where .. 21

4 Generate query for given table ... 22

5 Set row limit for query .. 22

6 Get query parameters ... 23

Index 0

Introduction 5

© 2021 http://delphihtmlcomponents.com

1 Introduction

SQL framework is designed for simplifying access to database metadata and creating/editing SQL
queries regardless of underlying database and data access components. It contains two parts

1. Database schema part
2. SQL queries part

Database schema part contains set of classes which represents database schema objects (tables,
fields, sequences, etc.) and adapter classes for different databases and data access components.
Following units are related to schema part:
· DMSchema - database objects classes and abstract classes for adapters.
· DMFireDAC - FireDAC provider.
· DMUniDAC - UniDAC provider.
· DMUIB - UIB provider.
· DMFirebird - Firebird adapter.
· DMOracle - Oracle adapter.
· DMPostgres - PostreSQL adapter.
· DMMySQL - MySQL adapter.
· DMSQLServer - Microsoft SQL adapter.

SQL part contains two units:
· sqlparse - SQL parser and transformer classes, SQL context class.
· sqlhleditor - example of SQL editor component based on JEDI JvWideHLEditor

1.1 Supported Databases

· Firebird
· Oracle
· MySQL
· Postgres
· Microsof SQL

1.2 Supported DAC

· FireDAC - unit DMFireDAC
· UniDAC - unit DMUniDAC
· UIB - unit DMUIB

Any other DAC can be used by implementing simple provider class descendant:

SQL Framework6

© 2021 http://delphihtmlcomponents.com

 TDMProvider = class abstract
 public type

 TDMProviderType = (Oracle, MySQL, Postgres, MSSQL, Firebird);

 function GetConnection: TObject; virtual; abstract;

 public

 constructor Create(const AConnection: string;

 AProviderType: TDMProviderType;

 const AConnectionOptions: string = ''); virtual; abstract;

 procedure Connect; virtual; abstract;

 function CreateQuery: TDMQuery; virtual; abstract;

 procedure ExecuteScript(const AScript: string); virtual; abstract;

 procedure CreateDatabase(const AName: string); virtual; abstract;

 property Connection: TObject read GetConnection;

 property ProviderType: TDMProviderType read FProviderType;

 end;

Database schema 7

© 2021 http://delphihtmlcomponents.com

2 Database schema

Database schema part represents database objects metadata and can be used for following purposes:

· Get list of database tables and its descriptions
· Get list of database views
· Get list of table or view fields with their types and descriptions
· Get list of table foreign keys and indexes
· Get list of database sequences
· Set table or field description
· Add new field into table
· Add new foreign key into table
· Add new index into table
· Add primary key into table
· Create new sequence
· Create new table with primary and foreign keys
· Get list of tables related to selected table
· Comparing tables metadata
· Comparing tables data
· Comparing schema metadata
· Creating trigger for autoincrement field simulation

2.1 Loading schema

Schema requires two objects - database adapter of TDMAdapter class which encapsulates specific
features of a database and DAC provider of TDMProvider class for accessing DB server.
Example of creating and loading DB schema:

 TDMSchema.GlobalSchema := TDMSchema.Create('', TDMFirebirdAdapter.Create,

 TDMFireDACProvider.Create('C:\test.fb@sysdba;masterkey', Firebird));

 TDMSchema.GlobalSchema.Reload;

Adapter and Provider are destroyed automatically by schema object.
When using schema loaded from XML (see Serialization and deserialization topic) provider parameter
can be nil.

2.2 Accessing schema objects

Tables (via TDMSchema object)

Tables List of all schema tables
FindTable Find table object by name, return nil if table is not found
TablebyName Find table object by name and raise exception if table is not found
FindTablebyAlias Find table object by default table alias
CreateTable Create table in database by generating and executing SQL script

Sequences (via TDMSchema object)

Sequences List of all sequences
SequencebyName Return sequence by name and raise exception if sequence not found
FindSequence Return sequence by name of nil when sequence is not found.

9

SQL Framework8

© 2021 http://delphihtmlcomponents.com

Fields (via TDMTable object)

Fields All table fields
FieldbyName Return field by name or raise exception if field is not found
HasField Return true when field is found in table
FindField Find field by name, return nil if field is not found
AddField Add field into DB table by generating and executing SQL script

Foreign Keys (via TDMTable object)

ForeignKeys All table foreign keys
HasForeignKeyto Return true if table has foreign key to table T
AddForeignKey Add foreign key into DB table by generating and executing SQL script

Indexes

Indexes All table indexes
AddIndex Add new index into DB table by generating and executing SQL script
HasIndexOn Return true if table has index on field F (F is only field in index or first field)

2.3 Creating SQL script

SQL script for schema objects can be obtained via schema Adapter object. It has the following methods:

CreateUpdateScript Create script containing difference between two schemas
FieldSQL Script for single field
TableSQL Script for table and related objects (primary and foreign keys, indexes)
ForeignKeySQL Script for table foreign key
IndexSQL Script for table index
SequenceSQL Script for sequence
TableDiffSQL Script containing differences between two tables
TableDataDiffSQL Script containing differences between data in two tables (only inserted and deleted

records using primary key)
TableDescriptionSQ
L

Scipt for setting table description

FieldDescriptionSQ
L

Script for setting field description

AutoIncrementTrigg
erSQL

Script for creating trigger for autoincrement field simulation

2.4 Comparing schema objects

Library has methods for creating SQL scripts containing differences between schema objects.
Compared objects can belong to different schema with different database types.

· Schema.Adapter.CreateUpdateScript: method for creating script containing difference in metadata
between two schema.

· Schema.Adapter.TableDiffSQL: method for creating script containing difference in metadata
between two tables

Database schema 9

© 2021 http://delphihtmlcomponents.com

· Schema.Adapter.TableDataDiffSQL: method for creating script containing difference in table data
between two tables (only inserted and deleted records)

2.5 Creating triggers for autoincrement fields

Use Schema.Adapter.AutoIncrementTriggerSQL to create SQL script for simulating autoincrement field
in table.

function AutoIncrementTriggerSQL(const T: TDMTable; const SQ: TDMSequence): string;

Trigger will fill primary key field with sequence value at insert when field is null.

2.6 Schema objects descriptions

Tables and Fields description (stored in database) can be read and modified via Description property. For
sequences, description is read only and can be set only at sequence creation.

2.7 Using schema in multithread enviroment

When accessing schema and schema objects from different threads place all code that use schema
objects between Schema.Aquire and Schema.Release calls.

2.8 Schema serialization and deserialization

Whole schema can be serialized to and deserialized from XML format using TDMSchema.AsXML:
string property. This can be used f.e. in following cases:

· Client application has no database connection (REST client)
· Current database should be compared with other database which is not accessible via network.
· Changes tracking

2.9 TDMField class

TDMField class represents table field metadata. It has the following members:

 function IsNumeric: boolean;

Check if field is numeric

 function IsFloat: boolean;

Check if field is float.

 function IsDateTime: boolean;

Check if field is date/time, date or time.

 function IsText: boolean;

Check if field is text (varchar, memo)

 function QuotedName: string;

Quoted field name in quotes

 property Name: string;

Field name

SQL Framework10

© 2021 http://delphihtmlcomponents.com

 property FullName: string

Field name with table name

 property DataType: TFieldType

Field type

 property Size: integer

Size for string and numeric fields

 property Precision: integer read FPrecision;

Precision for numeric fields

 property Scale: integer read FScale;

Scale for numeric fields

 property Description: string

Field Description (from database)

 property DefaultValue: string

Field default value

 property Calculated: string

Expression for calculated fields

 property Charset: string

Field charset

 property Table: TDMTable

Reference to field table

 property ForeignKey: TDMForeignKey

Reference to foreign key if field belongs to any.

 property PrimaryKey: TDMIndex

Reference to primary key (if field is included in PK)

 property IsPrimaryKey: boolean

Check if field is only primary key field

 property IsReadonly: boolean

Check if field is read only

 property NativeSQLType: string read FNativeSQLType write FNativeSQLType;

Native Field type (for source database)

 property IsNotNull: boolean

Check if field is not null

 property TableName: string read GetTableName;

Name of field table

Database schema 11

© 2021 http://delphihtmlcomponents.com

2.10 TDMTable class

TDMTable class represents table or view metadata and has the following members:

 function FieldbyName(const FieldName: string): TDMField;

Find field by name. Raise exception when field is not found

 function FindField(const FieldName: string): TDMField;

Find field by name. Do not raise exception when field is not found

 function HasField(const FieldName: string): boolean;

Check if field exists in table

 function HasForeignKeyto(const T: TDMTable): boolean;

Check if table has foreign key to another table

 function HasRelationWith(const T: TDMTable): boolean;

Check if one of the tables has foreign key to another.

 function HasIndexOn(const F: TDMField): boolean;

Check if table has index on field

 function AddField(const AName, ANativeType: string; ANotNull: boolean = false; const ADefault: string = ''): TDMField;

Add new field into table

 procedure DeleteField(const AName: string);

Remove field from table

 function AddForeignKey(const FKFields: array of TDMField;

 const FKTable: TDMTable;

 FKName: string = '';

 ADeleteAction: TDMForeignKey.TFKAction = faNoAction;

 AUpdateAction: TDMForeignKey.TFKAction = faNoAction): TDMForeignKey;

Add new foreign key into table

 function AddIndex(const AIndexFields: array of TDMField; IndexName: string = ''): TDMIndex;

Add new index into table

 procedure AddAutoincrementTrigger(const SQ: TDMSequence);

Add trigger for setting table primary key on inset using sequence value

 function AsXML: string;

Table structure in XML format

 function LikelyNameField: TDMField;

Return field which is most likely name field

 property Fields: TDMFieldList

List of table fields

 property Indexes: TDMIndexList

List of table indexes

 property ForeignKeys: TDMFKList

List of table foreign keys

SQL Framework12

© 2021 http://delphihtmlcomponents.com

 property Name: string

Table name

 property FullName: string

Table name including schema name

 property Description: string

Table description

 property PrimaryKey: TDMIndex

Table primary key (if exists)

 property Schema: TDMSchema

Table owner

 property Alias: string

Table default alias for using in SQL queries (unique in schema)

 property RelatedTables: TDMTableList

List of tables which has foreign keys to selected table of vice versa.

 property Kind: TDMTableKind

Table type - regular table, view or stored procedure.

SQL Parsing 13

© 2021 http://delphihtmlcomponents.com

3 SQL Parsing

SQL parser parses an SQL select query and translate it into a hierarchy of Delphi classes. The
generated hierarchy can be used for following purposes:
· Syntax checking
· Schema based query checking
· Query text formatting
· Getting list of used tables/fields/views/params
· Changing query columns, "where" conditions, "order by" columns.
· Adding new tables/columns
· Replacing tables/fields
· Translating between dialects

3.1 Database dialects

Supported database dialects:
· SQL92
· Oracle 9
· Oracle 12
· Firebird 2.0
· Firebird 3.0
· MySQL
· Microsoft SQL
· PostgreSQL

3.2 Class hierarchy

TSQLObject
TSQLExpression

TSQLOrderBy
TSQLColumn
TSQLTable
TSQLTopRowLimit
TSQLBottomRowLimit
TSQLStatement

TSQLCaseStatement
TSQLCastStatement
TSQLSelectStatement

TSQLSelectQuery
TSQLCTE

TSQLDialect
TSQLDialectFireBird

TSQLDialectFireBird3
TSQLDialectOracle

TSQLDialectOracle12
TSQLDialectMSSQLServer
TSQLDialectMySQL
TSQLDialectPostgres

SQL Framework14

© 2021 http://delphihtmlcomponents.com

3.3 Query hierarchy

TSQLSelectQuery
[CTE: TSQLCTEStatements = list of TSQLSelectQuery]
Statements: TSQLSelectStatements = list of TSQLSelectStatement
[Order: TSQLOrderByList = list of TSQLOrderBy]
[BottomRowLimit: TSQLBottomRowLimit]

TSQLSelectStatement
[TopRowLimit: TSQLTopRowLimit]
Columns: TSQLColumns
Tables: TSQLTables = list of TSQLTable
[Where: TSQLExpression]
[Group: TSQLExpressions = list of TSQLExpression]
[Having: TSQLExpressions = list of TSQLExpression]

3.4 Parsing sample

var SQ: TSQLSelectQuery;

begin

 SQ := TSQLSelectQuery.Create(nil);

 try

 SQ.ParseString(Editor.Lines.Text, TSQLDialectOracle);

 ...

 finally

 SQ.Free

 end;

3.5 Parsing errors and tolerant mode

In default parsing mode, exception is raised on first error in SQL script. Exception is of ESQLException
class and has Line and SourcePos properties.
When query should be parsed to the end regardless of any errors, set TolerantMode property to true. In
this mode only TSQLSelectQuery.OnError event is called but no exceptions raised.

3.6 Templates

Parser has support for mustache templates in SQL query. Templates has stTemplate token type and
nkTemplate expression node kind.
Example: following query will be parsed without errors:

select * from customers c where c.kind={{CUSTOMER_KIND}}

SQL formatting 15

© 2021 http://delphihtmlcomponents.com

4 SQL formatting

Class hierarchy can be serialized back into query text. TSQLFormatter class is used for producing
formatted SQL and has set of properties for adjusting produces text.

4.1 TSQLFormatter class

TSQLFormatter class has the following properties:

 property BlockIndent: integer

Block idend size (spaces)

 property SpaceAfterComma: boolean

Add space after comma symbol

 property AsBeforeFieldAlias: boolean

Add "as" between field expression and field alias

 property AsBeforeTableAlias: boolean

Add "as" between table expression and table alias

 property CaseReserved: TSQLFormatterCase

Char case for reserved words

 property CaseTables: TSQLFormatterCase

Char case for table names

 property CaseTableAliases: TSQLFormatterCase

Char case for table aliases

 property CaseFields: TSQLFormatterCase

Char case for field names

 property CaseFieldAliases: TSQLFormatterCase

Char case for field aliases

 property CaseParams: TSQLFormatterCase

Char case for parameters

 property CaseFunctions: TSQLFormatterCase

Char case for functions

 property LineFeedSelect: TSQLFormatterLineFeeds

Line feeds before and after SELECT word

 property LineFeedField: TSQLFormatterLineFeeds

Line feeds before and after column

 property LineFeedFrom: TSQLFormatterLineFeeds

Line feeds before and after FROM word

 property LineFeedTable: TSQLFormatterLineFeeds

Line feeds before and after table in FROM section

SQL Framework16

© 2021 http://delphihtmlcomponents.com

 property LineFeedJoin: TSQLFormatterLineFeeds

Line feeds before and after JOIN

 property LineFeedWhere: TSQLFormatterLineFeeds read FLineFeedWhere write FLineFeedWhere default [slfBefore];

Line feeds before and after WHERE word

 property LineFeedGroup: TSQLFormatterLineFeeds read FLineFeedGroup write FLineFeedGroup default [slfBefore];

Line feeds before and after GROUP word

4.2 Generating formatted SQL

var SQ: TSQLSelectQuery;

 SF: TSQLFormatter;

begin

 SF := TSQLFormatter.Create(nil);

 try

 SQ := TSQLSelectQuery.Create(nil);

 try

 SQ.ParseString(Editor.Lines.Text, DefaultSQLDialect);

 SQ.CaretPosition := Editor.PosFromCaret(Editor.CaretX, Editor.CaretY) + 1;

 SQ.AsString(SF);

 Editor.Lines.Text := SF.AsString;

 Editor.SetFocus;

 Editor.CaretFromPos(SQ.CaretPosition - 1, X, Y);

 Editor.SetCaret(X, Y);

 finally

 SQ.Free;

 end;

 finally

 SF.Free;

 end;

In this sample caret position in Editor is preserved using TSQLSelectQuery.CaretPosition property which return caret position in formatted query.

SQL transforming 17

© 2021 http://delphihtmlcomponents.com

5 SQL transforming

5.1 Transforming methods

TSQLSelectQuery has the following methods for transforming:

 procedure AddColumn(const TableName, FieldName: string);

Add field into column list. If table is not used in query it will be added into table list and join expression
will be created.

 procedure RemoveColumn(const TableName, FieldName: string);

Remove column containing field

 procedure OrderByColumn(const TableName, FieldName: string; Desc: boolean = false);

Add field into Order By list

 procedure ExpandAsterisk;

Replace table.* column with all table columns

 procedure ReplaceField(const SourceTableName, SourceFieldName, DestTableName, DestFieldName: string); override;

Replace all occurences of table field with another field

 procedure AddWhereCondition(const Condition: string; AndOperation: boolean = true); virtual;

Add condition to WHERE section of a query or first select statement or CTE

 procedure ReplaceFrom(const ATables: string);

Replace whole FROM section of a query or first select statement or CTE

5.2 Translating between dialects

To translate query from one dialect to anyther, parse it using first dialect, change dialect property and
then serialize. Example:

var SQ: TSQLSelectQuery;

 SF: TSQLFormatter;

begin

 SF := TSQLFormatter.Create(nil);

 try

 SQ := TSQLSelectQuery.Create(nil);

 try

 SQ.ParseString(Editor.Lines.Text, TSQLDialectFirebird);

 SQ.DialectClass := TSQLDialectOracle;

 SQ.AsString(SF);

 Editor.Lines.Text := SF.AsString;

 finally

 SQ.Free;

 end;

 finally

 SF.Free;

 end;

SQL Framework18

© 2021 http://delphihtmlcomponents.com

6 SQL context and code completion

TSQLContext class is used for creating context lists (code completion, etc.). Is has several properties
containing templates for different database objects - fields, tables, etc. (for template language
description please refer to HTML Report Library manual) and methods for filling context list.

6.1 TSQLContext class

 procedure FillContext(const Query: TSQLSelectQuery; CaretPos: integer);

Fill Items list with Query context at CarePos position

 procedure AddTable(const T: TDMTable);

Add table into Items

 procedure AddSequence(const S: TDMSequence);

Add sequence into Items

 procedure AddTableAlias(const Alias, TableName: string);

Add table alias into Items

 procedure AddField(const F: TDMField);

Add field without table alias into Items

 procedure AddQueryField(const F: TDMField; const TableAlias: string = '');

Add field with table alias into Items

 procedure AddReserved(const s: string);

Add reserved word into Items

 procedure AddJoin(const FK: TDMForeignKey; ST: TSQLSelectStatement; LeftTable: TSQLTable);

Add join expression into Items

 procedure AddColumn(const Name, Description: string; Index: integer);

Add column expression into Items

 procedure AddFunction(const Name, Template: string);

Add function into Items

 procedure AddFKTableValues(const Query: TSQLSelectQuery; const T: TDMTable; const FieldName: string); virtual;

Add values from foreign key table for given table and field.

 property Items: TStringList

Conpletion items list

 property TableTemplate: string

HTML template for Table

 property ViewTemplate: string

HTML template for View

 property FieldTemplate: string

HTML template for Field without table alias

 property QueryFieldTemplate: string

SQL context and code completion 19

© 2021 http://delphihtmlcomponents.com

HTML template for Field with table alias

 property TableAliasTemplate: string

HTML template for table Alias

 property SequenceTemplate: string

HTML template for Sequence

 property ReservedTemplate: string

HTML template for Reserved word

 property JoinTemplate: string

HTML template for join expression

 property ColumnTemplate: string

HTML template for column expression

 property ColumnsTemplate: string

HTML template for list of comma-separated columns

 property FunctionTemplate: string

HTML template for function

 property TableValueTemplate: string

HTML template for table value

6.2 Using SQL context

Example of filling SQL context list

 Context := TSQLContext.Create(nil);

 try

 SQ := TSQLSelectQuery.Create(nil);

 try

 SQ.TolerantMode := true;

 SQ.ParseString(Editor.Lines.Text);

 Context.FillContext(SQ, Editor.PosFromCaret(Editor.CaretX, Editor.CaretY) + 1);

 finally

 SQ.Free

 end

 finally

 Context.Free

 end

6.3 TSQLHLEditor class

TSQLHLEditorClass is a sample SQL editor with code completion implementation based on JVCL
TJvWideHLEdittor component. It has the following members added:

 procedure AddField(const AName: string);

Add column to query

 procedure RemoveField(const AName: string);

Remove column from query

SQL Framework20

© 2021 http://delphihtmlcomponents.com

 procedure OrderByField(const AName: string);

Add field into Order By list

 property Query: TSQLSelectQuery

Editor Query object

 property ErrorLine: integer read FErrorLine;

Error line (=-1 if no errors found)

 property ErrorMessage: string

Error message

 property CompletionStyle: TStrings

CSS for completion list

How To 21

© 2021 http://delphihtmlcomponents.com

7 How To

7.1 Get token at source position

Token at source position:

var

 TokenIndex: integer;

 Query: TSQLSelectQuery;

 T: TSQLToken;

begin

 ...

 TokenIndex := Query.Tokenizer.GetTokenIndexAt(CaretPos);

 T := Query.Tokenizer.Tokens[TokenIndex];

 ...

Last non-space token at source position:

var

 TokenIndex: integer;

 Query: TSQLSelectQuery;

 T: TSQLToken;

begin

 ...

 TokenIndex := Query.Tokenizer.GetNonSpaceTokenIndexAt(CaretPos);

 T := Query.Tokenizer.Tokens[TokenIndex];

 ...

7.2 Add table field to query columns

var SQ: TSQLSelectQuery;

 SF: TSQLFormatter;

begin

 SQ := TSQLSelectQuery.Create(nil);

 try

 SQ.ParseString(Editor.Lines.Text, SQLDialect);

 SQ.AddColumn(copy(FieldName, 1, pos('.', FieldName) - 1), copy(FieldName, pos('.', FieldName) + 1, MaxInt));

 SF := TSQLFormatter.Create(nil);

 try

 SQ.AsString(SF);

 Editor.Lines.Text := SF.AsString;

 finally

 SF.Free

 end;

 finally

 SQ.Free

 end;

7.3 Add condition to Where

var SQ: TSQLSelectQuery;

 SF: TSQLFormatter;

begin

 SQ := TSQLSelectQuery.Create(nil);

SQL Framework22

© 2021 http://delphihtmlcomponents.com

 try

 SQ.ParseString(Editor.Lines.Text, SQLDialect);

 SQ.AddWhereCondition('order.price>0');

 SF := TSQLFormatter.Create(nil);

 try

 SQ.AsString(SF);

 Editor.Lines.Text := SF.AsString;

 finally

 SF.Free

 end;

 finally

 SQ.Free

 end;

7.4 Generate query for given table

Create query containing main table and all joined tables. Column list is generated using
all non-FK columns from main table and TDMTable.LikelyNameColumn from joned tables.

 SQ := TSQLSelectQuery.Create(nil);

 try

 SQ.CreateQueryforTable('items', 1);

 SF := TSQLFormatter.Create(nil);

 try

 SQ.AsString(SF);

 Editor.Lines.Text := SF.AsString;

 finally

 SF.Free

 end;

 finally

 SQ.Free

 end;

7.5 Set row limit for query

var SQ: TSQLSelectQuery;

 SF: TSQLFormatter;

begin

 SQ := TSQLSelectQuery.Create(nil);

 try

 SQ.ParseSQL(Editor.Lines.Text, DefaultSQLDialect);

 if SQ.Statements[0].TopRowLimit = nil then

 SQ.Statements[0].TopRowLimit := TSQLTopRowLimit.Create(SQ.Statements[0]);

 SQ.Statements[0].TopRowLimit.ParseString('FIRST 100');

 SF := TSQLFormatter.Create(nil);

 try

 SQ.AsString(SF);

 Editor.Lines.Text := SF.AsString;

 finally

 SF.Free

 end;

 finally

 SQ.Free

 end;

How To 23

© 2021 http://delphihtmlcomponents.com

7.6 Get query parameters

To get list of query parameter use TSQLSelectQuery.GetAllParams method:

 procedure GetAllParams(const L: TSQLParams);

each parameter has Name, DataType and NativeSQLType. Types are determined by sibling fields and
constants when parameter is used in =, <>,like.. etc. operations.
There also are two class methods in TSQLSelectQuery class:

 class procedure ExtractSQLParams(const ASQL: string; const L: TStringList; ADialect:
TSQLDialectClass = nil);
 class procedure ExtractSQLParams(const ASQL: string; const L: TSQLParams; ADialect:
TSQLDialectClass = nil);

	Table of Contents
	Introduction
	Supported Databases
	Supported DAC

	Database schema
	Loading schema
	Accessing schema objects
	Creating SQL script
	Comparing schema objects
	Creating triggers for autoincrement fields
	Schema objects descriptions
	Using schema in multithread enviroment
	Schema serialization and deserialization
	TDMField class
	TDMTable class

	SQL Parsing
	Database dialects
	Class hierarchy
	Query hierarchy
	Parsing sample
	Parsing errors and tolerant mode
	Templates

	SQL formatting
	TSQLFormatter class
	Generating formatted SQL

	SQL transforming
	Transforming methods
	Translating between dialects

	SQL context and code completion
	TSQLContext class
	Using SQL context
	TSQLHLEditor class

	How To
	Get token at source position
	Add table field to query columns
	Add condition to Where
	Generate query for given table
	Set row limit for query
	Get query parameters

