P
SQL Framework

© 2021 http://delphihtmlcomponents.com

Contents 3

Table of Contents

Part |

1
2

Partll

© 00 N OO g B~ ON -

-
o

Partlll

O G A WODN =

Foreword

Introduction 5
Supported Databasesccoiiiiiiiiiiiiiiriir e e rr e e rannen 5
81T o Yo (=1 0 - X 5
Database schema 7
I T Y T T =T 0 1= 1 T 7
Accessing schema ODbJECtS ..o e 7
Creating SQL SCHIPt ...occuiiiii it e r e s re s e e e e s e ra e rnn s ennn s ennan 8
Comparing schema OBJECEScciveiieiiiiiri s r e e e e e n e nennn e s rnneen 8
Creating triggers for autoincrement fieldsccooioiiiiiiic 9
Schema objects desCriptions ... 9
Using schema in multithread enviroment ... e 9
Schema serialization and deserializationcc.ceoviiiiiiiiiiii s e e e 9
B4 =Y e IR o = == 9
I 1 IE= 1o 1 =3 = T 1
SQL Parsing 13
[72 § =] o 7= =TT o [=1 = o 13
Class hierarChy ..o 13
QuUETY RIErarChy ... e s e s e naan e na e e e ans 14
Parsing SAMPIec.ooeiiiiiii e e e e e e e rnrrn e e e ernnren 14
Parsing errors and tolerant modecooeiieiiiiiiiien e 14
L= 811] £ 1 LS PSPPSR 14
SQL formatting 15
IS T]I oY 4 = 1 (= gl o = 15
Generating formatted SQLcooeiiiiiiii e 16
SQL transforming 17
Transforming Methods ... e e e e e s s s ra s nan s na s ennrennss 17
Translating between dialectscccciieiiiiiiiiir e e s enn s 17
SQL context and code completion 18
TS QLCONIEXE ClaSS ..cuiiuiieiiiiiiiiiiiiiiii it s st sassasassasassassassassassnssassnssassnssnssnnsnnsnnsnnsnns 18
Using SQL CONtEXTceuiiieiiii i s e e s e s e ra e s e a s e nans 19
IS I e [oY o - 19

© 2021 http://delphihtmlcomponents.com

SQL Framework

Part Vii

O G A WODN =

How To 21
Get token at SOUrce POSItioNcoveiiiiiiiiiiir e e r e e r e rnenan 21
Add table field to query COlUMNSooeuiiiiiiii 21
Add condition to WHhere ... s s s s s e s mn e an 21
Generate query for given table ..o e 22
Set row limit for QUETY ..o e s s s s s s r e m s e m s e e e e ranrnnrnan 22
(€1 Ao LU= YA o T= 1= 4 =3 (= 23
Index 0

© 2021 http://delphihtmlcomponents.com

Introduction 5

1 Introduction

SQL framework is designed for simplifying access to database metadata and creating/editing SQL
queries regardless of underlying database and data access components. It contains two parts

1. Database schema part
2. SQL queries part

Database schema part contains set of classes which represents database schema objects (tables,
fields, sequences, etc.) and adapter classes for different databases and data access components.
Following units are related to schema part:

e DMSchema - database objects classes and abstract classes for adapters.

DMFireDAC - FireDAC provider.

DMUNIDAC - UniDAC provider.

DMUIB - UIB provider.

DMFirebird - Firebird adapter.

DMOracle - Oracle adapter.

DMPostgres - PostreSQL adapter.

DMMySQL - MySQL adapter.

DMSAQLServer - Microsoft SQL adapter.

SQL part contains two units:
o sqlparse - SQL parser and transformer classes, SQL context class.
¢ sqlhleditor - example of SQL editor component based on JEDI JWVideHLEditor

1.1 Supported Databases

e Firebird
Oracle
MySQL
Postgres
Microsof SQL

1.2 Supported DAC
¢ FireDAC - unit DMFireDAC
e UniDAC - unit DMUniDAC
e UIB - unit DMUIB

Any other DAC can be used by implementing simple provider class descendant:

© 2021 http://delphihtmlcomponents.com

SQL Framework

TDMProvider = class abstract

public type
TDMProviderType = (Oracle, MySQL, Postgres, MSSQL, Firebird);
function GetConnection: TObject; wvirtual; abstract;

public

constructor Create (const AConnection: string;
AProviderType: TDMProviderType;
const AConnectionOptions: string = ''); wvirtual; abstract;
procedure Connect; wvirtual; abstract;
function CreateQuery: TDMQuery; virtual; abstract;
procedure ExecuteScript (const AScript: string); wvirtual; abstract;
procedure CreateDatabase (const AName: string); wvirtual; abstract;
property Connection: TObject read GetConnection;
property ProviderType: TDMProviderType read FProviderType;
end;

© 2021 http://delphihtmlcomponents.com

Database schema 7

2 Database schema

Database schema part represents database objects metadata and can be used for following purposes:

Get list of database tables and its descriptions
Get list of database views

Get list of table or view fields with their types and descriptions
Get list of table foreign keys and indexes

Get list of database sequences

Set table or field description

Add new field into table

Add new foreign key into table

Add new index into table

Add primary key into table

Create new sequence

Create new table with primary and foreign keys
Get list of tables related to selected table
Comparing tables metadata

Comparing tables data

Comparing schema metadata

Creating trigger for autoincrement field simulation

21 Loading schema

Schema requires two objects - database adapter of TDMAdapter class which encapsulates specific
features of a database and DAC provider of TDMProvider class for accessing DB server.
Example of creating and loading DB schema:

TDMSchema.GlobalSchema := TDMSchema.Create('', TDMFirebirdAdapter.Create,

TDMFireDACProvider.Create ('C:\test.fb@sysdba;masterkey', Firebird)):;
TDMSchema.GlobalSchema.Reload;

Adapter and Provider are destroyed automatically by schema object.
When using schema loaded from XML (see Serialization and deserialization topicl_Q'ﬁ) provider parameter
can be nil.

2.2 Accessing schema objects

Tables (via TDMSchema object)

Tables List of all schema tables

FindTable Find table object by name, return nil if table is not found
TablebyName Find table object by name and raise exception if table is not found
FindTablebyAlias Find table object by default table alias

CreateTable Create table in database by generating and executing SQL script

Sequences (via TDMSchema object)

Sequences List of all sequences
SequencebyName Return sequence by name and raise exception if sequence not found
FindSequence Return sequence by name of nil when sequence is not found.

© 2021 http://delphihtmlcomponents.com

SQL Framework

2.3

24

Fields (via TDMTable object)

Fields All table fields

FieldbyName Return field by name or raise exception if field is not found
HasField Return true when field is found in table

FindField Find field by name, return nil if field is not found

AddField Add field into DB table by generating and executing SQL script

Foreign Keys (via TDMTable object)

ForeignKeys All table foreign keys
HasForeignKeyto Return true if table has foreign key to table T
AddForeignKey Add foreign key into DB table by generating and executing SQL script

Indexes

Indexes All table indexes

AddIindex Add new index into DB table by generating and executing SQL script
HaslndexOn Return true if table has index on field F (F is only field in index or first field)

Creating SQL script
SQL script for schema objects can be obtained via schema Adapter object. It has the following methods:

CreateUpdateScript Create script containing difference between two schemas

FieldSQL Script for single field

TableSQL Script for table and related objects (primary and foreign keys, indexes)
ForeignKeySQL Script for table foreign key

IndexSQL Script for table index

SequenceSQL Script for sequence

TableDiffSQL Script containing differences between two tables

TableDataDiffSQL Script containing differences between data in two tables (only inserted and deleted
records using primary key)

TableDescriptionSQScipt for setting table description

L

FieldDescriptionSQ Script for setting field description

L

AutolncrementTrigg Script for creating trigger for autoincrement field simulation

erSQL

Comparing schema objects

Library has methods for creating SQL scripts containing differences between schema objects.
Compared objects can belong to different schema with different database types.

e Schema.Adapter.CreateUpdateScript: method for creating script containing difference in metadata
between two schema.

e Schema.Adapter.TableDiffSQL: method for creating script containing difference in metadata
between two tables

© 2021 http://delphihtmlcomponents.com

Database schema 9

e Schema.Adapter.TableDataDiffSQL: method for creating script containing difference in table data
between two tables (only inserted and deleted records)

2.5 Creating triggers for autoincrement fields

Use Schema.Adapter.AutolncrementTriggerSQL to create SQL script for simulating autoincrement field
in table.

function AutoIncrementTriggerSQL (const T: TDMTable; const SQ: TDMSequence): string;
Trigger will fill primary key field with sequence value at insert when field is null.

2.6 Schema objects descriptions

Tables and Fields description (stored in database) can be read and modified via Description property. For
sequences, description is read only and can be set only at sequence creation.

2.7 Using schema in multithread enviroment

When accessing schema and schema objects from different threads place all code that use schema
objects between Schema.Aquire and Schema.Release calls.

2.8 Schema serialization and deserialization

Whole schema can be serialized to and deserialized from XML format using TDMSchema.AsXML:
string property. This can be used f.e. in following cases:

¢ Client application has no database connection (REST client)
¢ Current database should be compared with other database which is not accessible via network.
e Changes tracking

29 TDMField class

TDMField class represents table field metadata. It has the following members:

function IsNumeric: boolean;
Check if field is numeric

function IsFloat: boolean;

Check if field is float.

function IsDateTime: boolean;
Check if field is date/time, date or time.

function IsText: boolean;
Check if field is text (varchar, memo)

function QuotedName: string;
Quoted field name in quotes

property Name: string;
Field name

© 2021 http://delphihtmlcomponents.com

10

SQL Framework

property FullName: string
Field name with table name

property DataType: TFieldType

Field type

property Size: integer
Size for string and numeric fields

property Precision:

integer read FPrecision;

Precision for numeric fields

property Scale: integer read FScale;

Scale for numeric fields

property Description: string
Field Description (from database)

property DefaultValue: string

Field default value

property Calculated:

string

Expression for calculated fields

property Charset: string

Field charset

property Table: TDMTable

Reference to field table

property ForeignKey:
Reference to foreign key if

property PrimaryKey:

TDMForeignKey
field belongs to any.

TDMIndex

Reference to primary key (if field is included in PK)

property IsPrimaryKey: boolean

Check if field is only primary key field

property IsReadonly:
Check if field is read only

property NativeSQLType:

boolean

Native Field type (for source database)

property IsNotNull:
Check if field is not null

property TableName:
Name of field table

boolean

string read GetTableName;

string read FNativeSQLType write FNativeSQLType;

© 2021 http://delphihtmlcomponents.com

Database schema 1

210 TDMTable class

TDMTable class represents table or view metadata and has the following members:

function FieldbyName (const FieldName: string): TDMField;
Find field by name. Raise exception when field is not found

function FindField(const FieldName: string): TDMField;
Find field by name. Do not raise exception when field is not found

function HasField(const FieldName: string): boolean;

Check if field exists in table

function HasForeignKeyto(const T: TDMTable): boolean;
Check if table has foreign key to another table

function HasRelationWith (const T: TDMTable): boolean;
Check if one of the tables has foreign key to another.

function HasIndexOn (const F: TDMField): boolean;

Check if table has index on field

function AddField (const AName, ANativeType: string; ANotNull: boolean = false; const ADefault:
Add new field into table

procedure DeleteField(const AName: string);
Removwe field from table

function AddForeignKey(const FKFields: array of TDMField;
const FKTable: TDMTable;
FKName: string = '';
ADeleteAction: TDMForeignKey.TFKAction = faNoAction;
AUpdateAction: TDMForeignKey.TFKAction = faNoAction): TDMForeignKey;

Add new foreign key into table

function AddIndex (const AIndexFields: array of TDMField; IndexName: string = ''): TDMIndex;
Add new index into table

procedure AddAutoincrementTrigger (const SQ: TDMSequence) ;
Add trigger for setting table primary key on inset using sequence value

function AsXML: string;
Table structure in XML format

function LikelyNameField: TDMField;
Return field which is most likely name field

property Fields: TDMFieldList
List of table fields

property Indexes: TDMIndexList
List of table indexes

property ForeignKeys: TDMFKList
List of table foreign keys

© 2021 http://delphihtmlcomponents.com

12

SQL Framework

property Name: string
Table name

property FullName: string
Table name including schema name

property Description: string
Table description

property PrimaryKey: TDMIndex
Table primary key (if exists)

property Schema: TDMSchema
Table owner

property Alias: string
Table default alias for using in SQL queries (unique in schema)

property RelatedTables: TDMTableList

List of tables which has foreign keys to selected table of vice versa.

property Kind: TDMTableKind
Table type - regular table, view or stored procedure.

© 2021 http://delphihtmlcomponents.com

SQL Parsing

13

3 SQL Parsing

SQL parser parses an SQL select query and translate it into a hierarchy of Delphi classes. The
generated hierarchy can be used for following purposes:

Syntax checking

Schema based query checking

Query text formatting

Getting list of used tables/fields/views/params

Changing query columns, "where" conditions, "order by" columns.

Adding new tables/columns

Replacing tables/fields

Translating between dialects

3.1 Database dialects

Supported database dialects:
SQL92

Oracle 9

Oracle 12

Firebird 2.0

Firebird 3.0

MySQL

Microsoft SQL
PostgreSQL

3.2 Class hierarchy

TSQLObject
TSQLEXxpression
TSQLOrderBy
TSQLColumn
TSQLTable
TSQLTopRowLimit
TSQLBottomRowLimit
TSQLStatement
TSQLCaseStatement
TSQLCastStatement
TSQLSelectStatement
TSQLSelectQuery
TSQLCTE

TSQLDialect

TSQLDialectFireBird
TSQLDialectFireBird3

TSQLDialectOracle
TSQLDialectOracle12

TSQLDialectMSSQLServer

TSQLDialectMySQL

TSQLDialectPostgres

© 2021 http://delphihtmlcomponents.com

14

SQL Framework

3.3

3.4

3.5

3.6

Query hierarchy

TSQLSelectQuery
[CTE: TSQLCTEStatements = list of TSQLSelectQuery]
Statements: TSQLSelectStatements = list of TSQLSelectStatement
[Order: TSQLOrderByList = list of TSQLOrderBy]
[BottomRowLimit: TSQLBottomRowLimit]

TSQLSelectStatement
[TopRowLimit: TSQLTopRowLimit]
Columns: TSQLColumns
Tables: TSQLTables = list of TSQLTable
[Where: TSQLExpression]
[Group: TSQLExpressions = list of TSQLExpression]
[Having: TSQLExpressions = list of TSQLExpression]

Parsing sample

var SQ: TSQLSelectQuery;
begin
SQ := TSQLSelectQuery.Create (nil);
try
SQ.ParseString(Editor.Lines.Text, TSQLDialectOracle);
finally
SQ.Free
end;

Parsing errors and tolerant mode

In default parsing mode, exception is raised on first error in SQL script. Exception is of ESQLException
class and has Line and SourcePos properties.

When query should be parsed to the end regardless of any errors, set TolerantMode property to true. In
this mode only TSQLSelectQuery.OnError event is called but no exceptions raised.

Templates
Parser has support for mustache templates in SQL query. Templates has stTemplate token type and
nkTemplate expression node kind.

Example: following query will be parsed without errors:

select * from customers c where c.kind={{CUSTOMER KIND}}

© 2021 http://delphihtmlcomponents.com

SQL formatting 15

4 SQL formatting

Class hierarchy can be serialized back into query text. TSQLFormatter class is used for producing
formatted SQL and has set of properties for adjusting produces text.

41 TSQLFormatter class
TSQLFormatter class has the following properties:

property BlockIndent: integer
Block idend size (spaces)

property SpaceAfterComma: boolean
Add space after comma symbol

property AsBeforeFieldAlias: boolean
Add "as" between field expression and field alias

property AsBeforeTableAlias: boolean
Add "as" between table expression and table alias

property CaseReserved: TSQLFormatterCase
Char case for reserved words

property CaseTables: TSQLFormatterCase
Char case for table names

property CaseTableAliases: TSQLFormatterCase
Char case for table aliases

property CaseFields: TSQLFormatterCase
Char case for field names

property CaseFieldAliases: TSQLFormatterCase
Char case for field aliases

property CaseParams: TSQLFormatterCase
Char case for parameters

property CaseFunctions: TSQLFormatterCase
Char case for functions

property LineFeedSelect: TSQLFormatterLineFeeds

Line feeds before and after SELECT word

property LineFeedField: TSQLFormatterLineFeeds
Line feeds before and after column

property LineFeedFrom: TSQLFormatterLineFeeds
Line feeds before and after FROM word

property LineFeedTable: TSQLFormatterLineFeeds
Line feeds before and after table in FROM section

© 2021 http://delphihtmlcomponents.com

16 SQL Framework

property LineFeedJoin: TSQLFormatterLineFeeds
Line feeds before and after JOIN

property LineFeedWhere: TSQLFormatterLineFeeds read FLineFeedWhere write FLineFeedWhere defaul

Line feeds before and after WHERE word

property LineFeedGroup: TSQLFormatterLineFeeds read FLineFeedGroup write FLineFeedGroup defaul

Line feeds before and after GROUP word

4.2 Generating formatted SQL

var SQ: TSQLSelectQuery;
SF: TSQLFormatter;

begin
SF := TSQLFormatter.Create (nil);
try
SQ := TSQLSelectQuery.Create (nil);
try
SQ.ParseString (Editor.Lines.Text, DefaultSQLDialect) ;
SQ.CaretPosition := Editor.PosFromCaret (Editor.CaretX, Editor.CaretyY) + 1;
SQ.AsString (SF) ;
Editor.Lines.Text := SF.AsString;
Editor.SetFocus;
Editor.CaretFromPos (SQ.CaretPosition - 1, X, Y);
Editor.SetCaret (X, Y);
finally
SQ.Free;
end;
finally
SF.Free;
end;

In this sample caret position in Editor is preserved using TSQLSelectQuery.CaretPosition property

© 2021 http://delphihtmlcomponents.com

SQL transforming 17

5 SQL transforming

5.1 Transforming methods
TSQLSelectQuery has the following methods for transforming:

procedure AddColumn (const TableName, FieldName: string);
Add field into column list. If table is not used in query it will be added into table list and join expression
will be created.

procedure RemoveColumn (const TableName, FieldName: string);
Remowve column containing field

procedure OrderByColumn (const TableName, FieldName: string; Desc: boolean = false);

Add field into Order By list

procedure ExpandAsterisk;
Replace table.* column with all table columns

procedure ReplaceField(const SourceTableName, SourceFieldName, DestTableName, DestFieldName: =
Replace all occurences of table field with another field

procedure AddWhereCondition (const Condition: string; AndOperation: boolean = true); virtual;

Add condition to WHERE section of a query or first select statement or CTE

procedure ReplaceFrom(const ATables: string);
Replace whole FROM section of a query or first select statement or CTE

5.2 Translating between dialects

To translate query from one dialect to anyther, parse it using first dialect, change dialect property and
then serialize. Example:

var SQ: TSQLSelectQuery;
SF: TSQLFormatter;

begin
SF := TSQLFormatter.Create (nil) ;
try
SQ := TSQLSelectQuery.Create(nil);
try
SQ.ParseString (Editor.Lines.Text, TSQLDialectFirebird);
SQ.DialectClass := TSQLDialectOracle;
SQ.AsString (SF);
Editor.Lines.Text := SF.AsString;
finally
SQ.Free;
end;
finally
SF.Free;
end;

© 2021 http://delphihtmlcomponents.com

18

SQL Framework

6.1

SQL context and code completion

TSQLContext class is used for creating context lists (code completion, etc.). Is has several properties

containing templates for different database objects - fields, tables, etc. (for template language
description please refer to HTML Report Library manual) and methods for filling context list.

TSQLContext class

procedure FillContext (const Query: TSQLSelectQuery; CaretPos: integer);
Fill ltems list with Query context at CarePos position

procedure AddTable (const T: TDMTable);
Add table into ltems

procedure AddSequence (const S: TDMSequence) ;
Add sequence into ltems

procedure AddTableAlias (const Alias, TableName: string);
Add table alias into ltems

procedure AddField(const F: TDMField);
Add field without table alias into ltems

procedure AddQueryField(const F: TDMField; const TableAlias: string = '');
Add field with table alias into ltems

procedure AddReserved(const s: string);
Add reserved word into Items

procedure AddJoin (const FK: TDMForeignKey; ST: TSQLSelectStatement; LeftTable:
Add join expression into Items

procedure AddColumn (const Name, Description: string; Index: integer);
Add column expression into ltems

procedure AddFunction (const Name, Template: string);
Add function into Items

procedure AddFKTableValues (const Query: TSQLSelectQuery; const T: TDMTable; const FieldName:

Add values from foreign key table for given table and field.

property Items: TStringList
Conpletion items list

property TableTemplate: string
HTML template for Table

property ViewTemplate: string
HTML template for View

property FieldTemplate: string
HTML template for Field without table alias

property QueryFieldTemplate: string

TSQLTable) ;

© 2021 http://delphihtmlcomponents.com

SQL context and code completion 19

HTML template for Field with table alias

property TableAliasTemplate: string
HTML template for table Alias

property SequenceTemplate: string

HTML template for Sequence

property ReservedTemplate: string
HTML template for Reserved word

property JoinTemplate: string
HTML template for join expression

property ColumnTemplate: string
HTML template for column expression

property ColumnsTemplate: string
HTML template for list of comma-separated columns

property FunctionTemplate: string

HTML template for function

property TableValueTemplate: string
HTML template for table value

6.2 Using SQL context

Example of filling SQL context list

Context := TSQLContext.Create(nil);
try
SQ := TSQLSelectQuery.Create(nil);
try
SQ.TolerantMode := true;

SQ.ParseString(Editor.Lines.Text) ;
Context.FillContext (SQ, Editor.PosFromCaret (Editor.CaretX, Editor.CaretY) + 1);

finally
SQ.Free
end
finally

Context.Free
end

6.3 TSQLHLEditor class

TSQLHLEditorClass is a sample SQL editor with code completion implementation based on JVCL
TJWVideHLEdittor component. It has the following members added:

procedure AddField(const AName: string);

Add column to query

procedure RemoveField(const AName: string);
Remove column from query

© 2021 http://delphihtmlcomponents.com

20

SQL Framework

procedure OrderByField(const AName: string);

Add field into Order By list

property Query: TSQLSelectQuery
Editor Query object

property ErrorlLine: integer read FErrorLine;
Error line (=-1 if no errors found)

property ErrorMessage: string
Error message

property CompletionStyle: TStrings
CSS for completion list

© 2021 http://delphihtmlcomponents.com

How To 21

7 How To

7.1 Gettoken at source position
Token at source position:

var
TokenIndex: integer;
Query: TSQLSelectQuery;
T: TSQLToken;

begin
TokenIndex := Query.Tokenizer.GetTokenIndexAt (CaretPos);
T := Query.Tokenizer.Tokens[TokenIndex];

Last non-space token at source position:

var
TokenIndex: integer;
Query: TSQLSelectQuery;
T: TSQLToken;

begin
TokenIndex := Query.Tokenizer.GetNonSpaceTokenIndexAt (CaretPos);
T := Query.Tokenizer.Tokens[TokenIndex];

7.2 Add table field to query columns

var SQ: TSQLSelectQuery;
SF: TSQLFormatter;

begin
SQ := TSQLSelectQuery.Create (nil);
try
SQ.ParseString(Editor.Lines.Text, SQLDialect);
SQ.AddColumn (copy (FieldName, 1, pos('.', FieldName) - 1), copy(FieldName, pos('.', FieldName)
SF := TSQLFormatter.Create (nil) ;
try
SQ.AsString (SF);
Editor.Lines.Text := SF.AsString;
finally
SF.Free
end;
finally
SQ.Free
end;

7.3 Add condition to Where

var SQ: TSQLSelectQuery;
SF: TSQLFormatter;
begin
SQ := TSQLSelectQuery.Create(nil) ;

© 2021 http://delphihtmlcomponents.com

22 SQL Framework

try
SQ.ParseString (Editor.Lines.Text, SQLDialect);
SQ.AddWhereCondition('order.price>0");
SF := TSQLFormatter.Create (nil) ;
try
SQ.AsString (SF) ;
Editor.Lines.Text := SF.AsString;
finally
SF.Free
end;
finally
SQ.Free
end;

7.4 Generate query for given table

Create query containing main table and all joined tables. Column list is generated using
all non-FK columns from main table and TDMTable.LikelyNameColumn from joned tables.

SQ := TSQLSelectQuery.Create(nil) ;
try
SQ.CreateQueryforTable('items', 1);
SF := TSQLFormatter.Create (nil) ;
try
SQ.AsString (SF);
Editor.Lines.Text := SF.AsString;
finally
SF.Free
end;
finally
SQ.Free
end;

7.5 Setrow limit for query

var SQ: TSQLSelectQuery;
SF: TSQLFormatter;
begin
SQ := TSQLSelectQuery.Create(nil) ;
try
SQ.ParseSQL (Editor.Lines.Text, DefaultSQLDialect);
if SQ.Statements[0].TopRowLimit = nil then

SQ.Statements[0] .TopRowLimit := TSQLTopRowLimit.Create (SQ.Statements[0]);
SQ.Statements[0].TopRowLimit.ParseString ('FIRST 100'");
SF := TSQLFormatter.Create (nil) ;
try

SQ.AsString (SF);

Editor.Lines.Text := SF.AsString;
finally

SF.Free
end;

finally
SQ.Free
end;

© 2021 http://delphihtmlcomponents.com

How To 23

7.6 Get query parameters

To get list of query parameter use TSQLSelectQuery.GetAllParams method:
procedure GetAllParams(const L: TSQLParams);

each parameter has Name, DataType and NativeSQLType. Types are determined by sibling fields and
constants when parameter is used in =, <> like.. etc. operations.
There also are two class methods in TSQLSelectQuery class:

class procedure ExtractSQLParams(const ASQL: string; const L: TStringList; ADialect:
TSQLDialectClass = nil);

class procedure ExtractSQLParams(const ASQL: string; const L: TSQLParams; ADialect:
TSQLDialectClass = nil);

© 2021 http://delphihtmlcomponents.com

	Table of Contents
	Introduction
	Supported Databases
	Supported DAC

	Database schema
	Loading schema
	Accessing schema objects
	Creating SQL script
	Comparing schema objects
	Creating triggers for autoincrement fields
	Schema objects descriptions
	Using schema in multithread enviroment
	Schema serialization and deserialization
	TDMField class
	TDMTable class

	SQL Parsing
	Database dialects
	Class hierarchy
	Query hierarchy
	Parsing sample
	Parsing errors and tolerant mode
	Templates

	SQL formatting
	TSQLFormatter class
	Generating formatted SQL

	SQL transforming
	Transforming methods
	Translating between dialects

	SQL context and code completion
	TSQLContext class
	Using SQL context
	TSQLHLEditor class

	How To
	Get token at source position
	Add table field to query columns
	Add condition to Where
	Generate query for given table
	Set row limit for query
	Get query parameters

