e
HTML Scripter

© 2016 http://delphihtmlcomponents.com

Contents 3

Table of Contents

Part |
Part Il
Partlll

© 00 N OO g B~ ON -

I G
w N = O

Part IV

© 0O N OO g A ON -

o O G 4
a A~ WO N =2 O

Foreword 0
Introduction 6
Getting started 7
Script Language 8
L0 T T 8
SCHIPE SLIUCIUIE ... s s s m s s e s e sr s e s e s m s sansnansen 8
0 === T o o = 9
L0 114 =Y 1Y 10
StateMENTS ... e e 10
Variables ... e e e e e ra s s na s rnnrrnn s 11
L £ N 12
V1T 41 T 13
Function declaration ... s 13
ANONYMOUS fUNCHIONSuuiiiiiiii i e e e e 13
Reference to fUNCHON ... e e e e e 14
Ordinal typesS NEIPETSccuiieiiieiiicii e e s s rr e s s s s s s rasna s rnasemnsennsrnnrennsennrnns 14
ASyNChronous fUNCHIONSciieiiiicii e s r e e e s e s n s s s s e s ra s nanrmanemnrennss 15
Using Delphi classes and functions 16
Registeging Delphi classes and methodscc.coiiiiiiiiici e 16
Default Propertiesccccci i rc s e e e e e rranrnn 17
Generic method handler ... e e e e 17
Registering for-in eNUMEratorsccoiiiiiiiiii 18
Registering Delphi fUNCLIONSooeiiieii e e e e s s e s e e 19
"Set Of" PAraMELerS ... ccuiieiii i e e e rranrnn 20
Array Parametersooceuiiiiiiii i e e ean 20
Registering DLL fUNCHIONScociuiiiiiiii i e e e 20
1= Yo T30 {1 T T £ o o T PN 20
Registering CONSLANtSccoiieiieiiii s s s e s e e e e rnrn e n s en s e rnnnren 21
Registering enUMErationsccoiiuiiiiiiiiiiii 22
Creating and destroying objectsccivruiiiiiiiiiiii 22
Using script functions as Delphi event handler ... 23
Using script functions for callbackcoceiieiiiiiiiir e s s e s e e 23
Changing or disabling standard functions and classes setccceiiiiiiiiiciien e, 24

© 2016 http://delphihtmlcomponents.com

HTML Scripter

PartV
1

2

3

4

Part Vi
1

2

3

4

5

6

7

8

9

Part Vii
1

2

3

4

5

6

7

Part Vil
1

2

3

4

5

6

Part IX

Expressions 26
EXpression evaluationcc.ccoiveiiieiiiiiiiiieir s s s s e e e e e e nanenn 26
Passing Parameterscoiieuiiiiiiii i e e 26
Using custom variables getter/setterccccooiimiiiiiiiiiiii 26
Evaluating expression inside SCriptcociiiiiiiiiiii s e eas 27
Executing script 28
EX@CUtiNG SCHPE ...ceeniiieiiee e e 28
Accesing global variablescoiiieiiiiiiiin 28
Calling script fUNCHONceiiie e e s s e s e m s ra s e s rnnrennenns 28
Calling script function with var (out) parameterscccoeeiiiiiiciieier e e 29
Executing code BIOCKcoceuiiiieiiiieiii i 29
Predefined variables ... e e s 30
Executing script from SCriptccoiveiiiiiiiiir s r e e e een 30
UNIES/USES ..oeuiiieiii it s s e e e e s e e e e r e e e na e e a r e e 30
Error address and callstack ... 31
Debugging 32
85T o7 g o772 o T8 e T 1= o - 32
Conrolling script @XeCULIONoiieiiiiiiiiii i 32
Getting Variables ... 33
(0267 E=To Y T=J=1 3 Ue I U o T |1 ' [N 33
o o 1 ' PN 33
127 == 1 4o Xo 1 41 PN 33
Expression evaluation ... e e 34
Using script in HTML document 35
INErOAUCHION ... e e e e e 35
B0 = V= T o Y'Y o o 35
Y= 0 N 37
0L) N 38
Interactive hints ..o e 38
L= T T = =T 1T 39
Make table SOrtable ... ———————————————————————————— 39
Highlight list items starting with "A' ... ——— 39
Convert nested list into eXpandable tree ... e nan 39
Directory tree with background loading
Incremental SEArCR ... —————————————————
LT T T L= o T =
Calling script function from DeIPRiooeiiiiir e ———
Standard functions

© 2016 http://delphihtmlcomponents.com

Contents

Part X Standard constants
Part XI Standard classes

Index

48
49

© 2016 http://delphihtmlcomponents.com

HTML Scripter

Introduction

HTML Scripter is a cross-platform and 100% native scripting library for Delphi. It supports
most of Object Pascal language features including modern anonymous functions and for-in
statement. Scripter engine is GUI-independent and threadsafe, so can be used in both
desktop and server applications.

Library is optimized for both execution and parsing/compiling performance and can be
used in high-loaded applications. It also support special features, like JQuery $() function
for using inside HTML Component Library THtDocument class.

Supported platforms:
e Win32/VCL

e Win64/VCL

e Win32/FMX

e Win64/FMX

o OSX

e Android

¢ i0OS

e Linux

Supported Delphi versions
Delphi 5 - Delphi 10.3 Rio.

Main features

e Extremely fast parsing and compilation.

e Using Delphi methods and properties via RTTI (2010+).

e Easy registration of Delphi functions (no need for special intermediate functions, just pass
function address and description).

e Anonymous functions.

e for..in .. statement.

e DLL functions.

Ordinal types helpers

Using script functions as Delphi event handlers.

Debugging and logging support.

Profiling

Set of and array parameters.

¢ Asynchronous and delayed execution

e HTML documents integration (JQuery $ operator)

© 2016 http://delphihtmlcomponents.com

Getting started 7

2 Getting started

Simplest example of how to use THtScriptParser:

uses htscriptparse, htscriptgui;

procedure TForml.ButtonClick(Sender: TObject);
var SP: THtScriptParser;
begin
SP := THtScriptParser.Create ('ShowMessage(''test'');"');
try
SP.Run;
finally
SP.Free
end;
end;

© 2016 http://delphihtmlcomponents.com

HTML Scripter

3.1

3.2

Script Language

Overview

Scripter language syntax is almost identical to Object pascal syntax except the following:
e Variables declaration is possible but not required (if soRequireVarDeclaration is not set in

Options).
¢ Classes declaration is not supported

Script structure

Script has the following structure: (all sections are optional)

[program <name>; | unit <name>;]
[interface]

[uses <unit list>]

[const and functions declarations]
[main code block | implementation]

[initialization]

Example:

const
MyText = 'Sample text';

procedure Sample(s: string);
begin
ShowMessage (s) ;

end;

Sample (MyText) ;

Example of unit:
unit MyTest;

interface

function MyInttoStr (Value: integer):

implementation

string;

© 2016 http://delphihtmlcomponents.com

Script Language 9

function MyInttoStr (Value: integer): string;
begin
if Value = 0 then
Result := "'
else
Result := InttoStr (Value)
end;
end.

3.3 Expressions

Following operations are allowed in expressions
* /,and, +,-,0r,<>,>=,<=,=,>,<,div, mod, xor, shl, shr, A, @, is, not, in, not in

"in" operation can be used with arrays:
if s in ['abc', 'def'] then

sets or ranges
if n in [1..10] then

and classes with enumerators (see Registering for-in enumerators)[18]

Example:
L := TStringList.Create();
L.Add('abc");
L.Add ('def");

if s in L then

is operator supports simple types:
if k is string then ...;

Compound assignment operators:

~ o~ O~
|+
([l
NN

*
Il
~

Ternary operator:
a := 1if b = 1 then 2 else 3;

case operator:

a := case b of 1: 2; 1+1: 4-1; else 4 end;

© 2016 http://delphihtmlcomponents.com

HTML Scripter

Comments

Following comment styles can be used:
{ multiline comment }

(* multiline comment 2 *)

// .. single line comment

Statements

List of supported statements:

Assignment:
<variable or property> := <expression>;
(including compound assignments +=, -=, *=)

if <expression> then
<statement>
[else <statement>]

for <variable> := <from expression> to <to expression> do
<statement>

for <variable> in <expression> [index <variable>] do
<statement>

"for in" statement has optional index variable which is set to current loop iteration
Note that when using with string starting with 1 (ZEROBASEDSTRINGS OFF) loop will sta:

loop variable can be declared inside for statement, with or without type:

for var i: integer := 1 to N do
for var 1 := 1 to N do

while <expression> do
<statament>

repeat
<statement>
until <expression>

case <expression> of
<expression>: <statement>;

<expression>: <statement>;
[else <statement>]
end;

© 2016 http://delphihtmlcomponents.com

Script Language 11

case expressions can be of any type.
raise <exception object>;

try
<statement>

except
[on <variable>: <type> do]
<statement>

end;

try
<statement>
finally
<statement>
end;

3.6 Variables

Variables can be declared inside function body, before begin.

All variables declared inside function, function parameters and Result variable is treated as
local and does not affect script global variables.

For example:

procedure Test () ;
var a: integer;

begin

a := 100;
end;
a := 200;
Test () ;

// a is still 200
variable declaration can contain initial value:

var a: integer = 0;

Variables used as for statement iterator in local functions are treated as local variables.

Variables ordinal types:
e array

e ansistring

boolean

byte

cardinal

char

e currency

© 2016 http://delphihtmlcomponents.com

12

HTML Scripter

3.7

e double

e extended
e integer

e int64

e longint

e pchar

e pointer

e rawbytestring
e string

e single

o set

e smallint

e TDatetime
e variant

e widestring
e word

Arrays

Library supports single-dimensional arrays.
Arrays can be passed as function parameters, for example

s := Format ('Value is %s', [valuel]):;

and assigned in code:

Following functions can be used on arrays:
High() - array high bound

Length() - array length

SetLength() - set array length

[index] - get or set array element

Arrays supports in operator, f.e.

if 5 in a then ...

and can be used in for-in statements:

for x in a do ...

© 2016 http://delphihtmlcomponents.com

Script Language 13

3.8 Numbers

Supported number formats:

123 // integer
12345 //float
123.45e2 //float
$A1B2 //Hex
%1110101 //Binary

3.9 Function declaration

Script function has the following structure:

procedure | function <name>([parameters]) [: <result type>]);
[var <variables>;]
begin
<function body>
end;
Example:
function Substring(s: string; Start, Len: integer): string;
begin
Result := copy(s, Start, Len)
end;

functions can have default parameters.

Example:
function Substring(s: string; Start: integer = 1; Len: integer = MaxInt): string;
begin
Result := copy(s, Start, Len)
end;

3.10 Anonymous functions

Library supports declaration of anonymous functions. Anonymous functions can be passed
as parameter or assigned to variable.

Example:
t := function(s: string): string;
begin
Result := copy(s, 2, MaxInt)

© 2016 http://delphihtmlcomponents.com

14 HTML Scripter

end) ;
ShowMessage (t ('123"));

3.11 Reference to function

Variables can contain reference to any function defined in script or registered from Delphi
code.
Example:

t := @ShowMessage;
t('test');

3.12 Ordinal types helpers

Ordinal types helpers are available for Delphi XE4+.

Helpers (from SysUtils unit) are available for the following types:
e string

e single

double

integer

For example, you can write

ShowMessage ('abc'.ToUpper())
s := 'test';
sl := s.substring(l, 2);

Overloaded helper methods
Scripter can distinct between overloaded helper methods with different number of

parameters.
For example, TStringHelper has two Substring methods:

function Substring(StartIndex: Integer): string; overload;
function Substring(StartIndex: Integer; Length: Integer): string; overload;

You can use both:

a.SubString (1) and a.SubString (1, 3)

© 2016 http://delphihtmlcomponents.com

Script Language 15

3.13 Asynchronous functions

Library has several build-in functions providing asynchronous code execution.

Asynchronous execution

procedure Async (AsyncFunction, AfterFunction);

AsyncFunction: function: variant;
AfterFunction: procedure (Value: variant);

AsyncFunction is executed in separate thread. When execution is finished, AfterFuncion is
executed in a main thread context, and result of AsyncFunction is passed as AfterFunction
parameter.

Passing parameters
Asynchronous function can access global variables, but they can be changed in a main

thread while asynchronous function is executed. Values can be passed directly to both
AsyncFunction and AfterFunction using third parameter of Async. Example:

Async (
function(n: integer) begin Result := n + 1 end,
function(n, res: integer) begin ... end,
[123]

) ;

Both functions should have same set of parameters, but AfterFunc also have additional
parameter for passing AsyncFunction result.

Delayed execution

Similarly to Javascript SetTimeout, there is

procedure SetTimeout (AFunction: procedure; Timeout: integer);
AFunction is executed in a main thread context after Timeout milliseconds.
Timer can be reset using ClearInterval function. Example:

t := SetTimeout (@MyFunc, 500);
ClearInterval (t) ;

© 2016 http://delphihtmlcomponents.com

16

HTML Scripter

4.1

Using Delphi classes and functions

Registeging Delphi classes and methods

Registration of Delphi class is necessary (for Delphi 2009+) only in following cases
e object of this class will be created in script via constructor

classis used in 'is' operator

object of this class is used in for-in statement.

RTTI is disabled for the class.

Classes can be registered for global usage (in any script) or for single Scripter instance.
To register global class use HtScriptGlobal instance for registration.

Delphi class registration:
Scripter.RegisterClass(<constructor declaration>, <constructor>, <class>);

Example:

HtScriptGlobal.RegisterClass ('Create()', @TStringlList.Create,
TStringList) ;

Registering methods and properties:

For Delphi 2009+ and classes with RTTI enabled, registering properties and methods is
optional. All properties and methods that has RTTI or Extended RTTI will be available in
script without registration.

Example of registering class with properties and methods:

TStringsHack = class (TStrings);

with HtScriptGlobal.RegisterClass('Create()', @TStrings.Create, TStrings)
begin
RegisterProperty('Count', 'integer', @TStringsHack.GetCount, nil);
RegisterProperty('Items', 'string', @TStringsHack.Get, @TStringsHack.Put,
'integer', true);
RegisterProperty('Objects', 'TObject', @TStringsHack.GetObject,
@TStringsHack.PutObject, 'integer');
RegisterProperty ('Text', 'string', @TStringsHack.GetTextStr,
@TStringsHack.SetTextStr) ;
RegisterMethod ('Add (const s: string)', @TStrings.Add);

RegisterMethod ('AddObject (const s: string; O: TObject)',
@TStrings.AddObject) ;
RegisterMethod ('Delete (Index: integer)',

do

© 2016 http://delphihtmlcomponents.com

mailto:@TStringList.Create,
mailto:@TStringsHack.Put
mailto:@TStringsHack.GetObject,
mailto:@TStringsHack.GetTextStr,

Using Delphi classes and functions 17

@TStrings.Delete);
RegisterMethod ('Exchange (Indexl, Index2: integer)',
@TStrings.Exchange) ;
RegisterMethod ('Insert (Index: Integer; const s: string)',
@TStrings.Insert);
end;

4.2 Default properties

For Delphi versions with extended RTTI support (2010+) default properties are determined
automatically.
Simply call them with standard syntax:

StringList[i] := 'abc';
4.3 Generic method handler

Generic method handlers are intended for processing several class methods or properties in
one handler. When class has registered generic method handler, all calls to class methods
or object instance methods and properties are first processed by generic handler.

For example it can be used for implementing SOAP/REST client class where all methods
calls will be passed directly to a server.

To register generic method handlers, declare procedure of the following type:

function (const Sender: TScriptParser; const Instance: TObject;
const MethodName: string; var Params: TScriptStack; StackTop,
AParamCount: integer; IsSetter: boolean; wvar Res: Variant): boolean;

and set GenericHandler property of the class:

HtScriptGlobal.RegisterClass ('create()', @TTestClass.Create,
TTestClass) .GenericHandler := MyGeneric;

When IsSetter is true, method is property setter and new value is passed in Res variable, in
other cases method should return value in Res.

Handler should return true if method is processed successfully, otherwise standard
method/property processing will be used.

Generic handler will be used even when it is registered to object class ancestor, but only
first found handler will be executed. For example:

type
Cl = class;
C2 = class(Cl);
C3 = class(C2);

© 2016 http://delphihtmlcomponents.com

mailto:@TTestClass.Create,

18

HTML Scripter

4.4

if generic handlers are registered for C1 and C2 and instance is of class C3, only handler for
C2 will be called.
For class methods (including constructor) Instance parameter contains nil.

Example of generic handler for TDataset.Fields property.

Currently this property cannot be used properly inside script because it is declared as
Fields: TFields

instead of

Fields[Index: integer]: TField.

function TDatasetGenericHandler (const Sender: THtScriptParser; const Instance: TObject
const MethodName: string; var Params: TScriptStack; StackTop, AParamCount: integer;
begin
Result := false;
if SameText (MethodName, 'fields') then
begin
Result := true;
Res := Object2Variant ((Instance as TDataSet) .Fields[Params[StackTop].Valuel);
end;
end;

initialization

HtScriptGlobal.RegisterControlClass (@TDataSet.Create, TDataSet) .GenericHandler := TD:x

Registering for-in enumerators

To use an object of some class in for-in statement it is necessary to register a class
enumerator.
Class enumerator is a descendant of abstract THtScriptEnumerator class:

THtScriptEnumerator = class
public
///<summary> Create enumerator for Instance object</summary>
constructor Create (const Instance: TObject); wvirtual; abstract;
///<summary> Move to next item. Return false if end of list is reached </summary>
function Next: boolean; wvirtual; abstract;
///<summary> Get current item </summary>
procedure GetCurrent (var Value: variant); virtual; abstract;
end;

Example of enumerator implementation:

constructor TStringlListEnumerator.Create(const Instance: TObject);

begin
fIndex := -1;
flList := Instance as TStringList;

© 2016 http://delphihtmlcomponents.com

Using Delphi classes and functions 19

end;
procedure TStringlListEnumerator.GetCurrent (var Value: variant);
begin
Value := flist[fIndex]
end;
function TStringListEnumerator.Next: boolean;
begin
inc (fIndex) ;

Result := fIndex < fList.Count;
end;

Registering class enumerator:

with HtScriptGlobal.RegisterClass ('Create()', @TList.Create, TList) do
begin

EnumeratorClass := TListEnumerator;
end;

4.5 Registering Delphi functions

Functions can be registered for global usage (in any script) or for Scripter instance.
To register global function use HtScriptGlobal instance for registration.

To register common Delphi function pass function declaration and pointer to function:
Example:

HtScriptGlobal.RegisterFunc ('WeekOf (AValue: TDateTime): Word', @WeekOf):;

Important note: functions should use "Register" calling convention.

Registering class function (non-static):

HtScriptGlobal.RegisterFunc ('Error (Msg: string; Data: integer)',
@TList.Error, nil, TList);

Registering object function (method):

MyScript.RegisterFunc ('Sample() ', @MyObject.Sample, MyObject);

© 2016 http://delphihtmlcomponents.com

20

HTML Scripter

4.6

4.7

4.8

4.9

Object function call looks in script code like normal function call:

Sample () ;

but it will execute TMyObject.Sample() method of MyObject object instance.

Parameters default values

functions can have parameters with default values.
Example:

HtScriptGlobal.RegisterFunc ('MyFunc(s: string; Index: integer = 1)', @MyFunc);
"Set of" parameters

Function parameter with "set of.." type should be registered as "set".
Example:

HtScriptGlobal.RegisterFunc ('MessageDlg(Msg: string; DlgType: integer;
Buttons: Set; HelpCtx: integer): Integer', @MessageDlqg);

Calling in script:
MessageDlg ('Test', mtWarning, [mbYes, mbNo, mbCancel], 0);

Array parameters

Array parameters are supported with standard syntax:

function([al, a2, a3])
Registering DLL functions

Example of DLL function declaration:

function MessageBox (Handle: integer; Text, Caption: pchar; uType: integer): Integer;
external 'user32.dll' name 'MessageBoxW';

Magic functions

Magic function is a special function used in following cases

e number of parameters can vary

e Parameter types are not known

e parameter cannot be passed in a standard way (for example - array)

© 2016 http://delphihtmlcomponents.com

Using Delphi classes and functions 21

e function needs Scripter instance to work.
e function has var parameters (for example Insert or Delete)

Magic function has following declaration:

function MagicFunction (const Sender: TScriptParser; wvar Params: TScriptStack;
StackTop, ParamCount: integer): Variant;

Sender is Scripter instance in which function is called.

Params is pointer to current runtime stack (array of TExVariable)
StackTop is index of top stack variable

ParamCount - number of parameters in call.

Example of magic function implementation:

function MagicInc (const Sender: THtScriptParser; wvar Params: TScriptStack;

StackTop, ParamCount: integer): Variant;
begin

if ParamCount = 1 then

begin

if Params[StackTop].IsTemp then
Sender.Tokenizer.Error (sVarRequiredforInc);
Result := Params|[StackTop].Value + 1;
Params[StackTop] .Value := Result;
end else begin
if Params[StackTop - 1].IsTemp then
Sender.Tokenizer.Error (sVarRequiredforInc);

Result := Params|[StackTop - 1].Value + Params[StackTop].Value;
Params[StackTop - 1].Value := Result;
end;

end;

Registering magic function:

HtScriptGlobal.RegisterMagicFunc ('Inc', MagicInc);
Getting function name.

When magic function is registered with different names, current (called) function name can
be obtained via call stack:

Name := TScriptFunc (Sender.DebugStack[Sender.DebugStack.Count - 1]) .Name

410 Registering constants

Constants can be registered for global usage (in any script) or for Scripter instance.
To register global constant use HtScriptGlobal instance for registration.

© 2016 http://delphihtmlcomponents.com

22 HTML Scripter

Example:

HtScriptGlobal.RegisterConst ('MaxInt', MaxInt);
411 Registering enumerations

To register enumeration type use TScriptParser.RegisterEnum method.
Example:

HtScriptGlobal.RegisterEnum (TypeInfo (TMsgDlgType)) ;

Every element of enumeration is registered as constant. Maximum enumeration size is 32
for 32-bit target.

412 Creating and destroying objects
Objects created in script using constructors, for example

L := TStringList.Create();

will be destroyed automatically with scripter instance. Also you can destroy it manually via
Free() call:

L.Free();

After calling the destructor, object variable is set to null.

If an object created in script should be available after script is destroyed, release it using
ReleaseObject (0: TObject): TObject

function.

If you create an object in Delphi code (for using in script) and want this object to be added
into auto-free list use

Scripter.CreateObject (MyObject) ;
method.

Also you can set AutoFreeResult flag when registering a function:

HtScriptGlobal.RegisterFunc ('CreateSpeciallist: TObject',
@CreateSpeciallist) .AutoFreeResult := true;

so all objects created via this function will be destroyed automatically.

© 2016 http://delphihtmlcomponents.com

Using Delphi classes and functions 23

413

414

Creating and destroying Components and Controls.

Since TComponent has Owner/Components mechanism for destroying, there is special
soAutoFreeComponents flag in Script.Options.

When set to false (by default) all objects of TComponent type created by constructor and
having Owner will not be destroyed by script.

Using script functions as Delphi event handler

Script functions can be used as Delphi components event handler. Currently library supports
only events of following types:

TNotifyEvent

TCloseQuery

TMouseDown

TMouseMove

TMouseWheel

To use script function as event handler simply assign a function to event property in a script
code:

procedure TestEvent (Sender: TObject);

begin

ShowMessage (Sender.Name) ;
end;
Form.OnDblClick := @TestEvent;

Setting event handler from Delphi code

To set script function as event handler use TScriptFunc.AsNotifyEvent property.
Example:

Forml.OnDblClick := Script.CreateAnonymousFunction ('MessageDlg(''Test'"',
mtWarning, [mbYes, mbNo, mbCancel], 0)').AsNotifyEvent;

Using existing script function:
Forml.OnDblClick := Script.FindFunction ('MyEventHandler') .AsNotifyEvent;
Using script functions for callback

Script functions can be used as callback functions in Delphi Code.
For example, there is a class containing list of objects, and we want to sort it from script
with custom compare procedure.

© 2016 http://delphihtmlcomponents.com

24 HTML Scripter

In Delphi code we declare compare procedure:

function TMyList.ScriptCompare (Func: TScriptFunc;
const E1, E2: TListElement): integer;
begin
Result := Func.Owner.RunFunction (Func, [Object2Variant(El), Object2Variant (E2)])
end;

and Sort procedure

procedure TMyList.SortElements (Compare: TScriptFunc; Asc: boolean);
begin

end;

Sort procedure is called from script code:

MyList.SortElements (
function (E1l, E2: TObject);
begin

end,
true);

4.15 Changing or disabling standard functions and classes set

Sometimes it is necessary to reduce set of standard functions/classes or replace it with

custom function set.
To use custom functions/classes set instead of standard, create a THtScriptGlobal class

descendant.
THtScriptGlobal contains several method for functions and classes registration accordingly

to Delphi units:

THtScriptGlobal = class (THtScriptParser)
protected
// TObject.class
fTObject: TScriptClass;
// TObject.Free method
fFreeMethod: TScriptFunc;
StringHelper, IntegerHelper, SingleHelper, DoubleHelper: pointer;
procedure RegisterInternals; virtual;
procedure RegisterOrdinalHelpers; virtual;
procedure RegisterMagicFunctions; wvirtual;
procedure RegisterHtFunctions; wvirtual;
procedure RegisterMathFunctions; wvirtual;
procedure RegisterSystemFunctions; virtual;
procedure RegisterSysUtilsFunctions; virtual;

© 2016 http://delphihtmlcomponents.com

Using Delphi classes and functions 25

procedure RegisterClassesFunctions; virtual;
procedure RegisterDateUtilsFunctions; wvirtual;
public
procedure RegisterAll; wvirtual;
end;

By overriding RegisterAll method you can control what functions/classes will be
registered.
Default RegisterAll code:

fScriptGlobal := Self;
RegisterInternals;
RegisterOrdinalHelpers;
RegisterMagicFunctions;
RegisterSystemFunctions;
RegisterSysUtilsFunctions;
RegisterClassesFunctions;
RegisterMathFunctions;
RegisterDateUtilsFunctions;
RegisterHtFunctions;

functions/classes registered by RegisterInternals are required, so this method should be called by any -
RegisterOrdinalHelpers is optional, like other methods, but is necessary for ordinal type
helpers to work.

To use new THtScriptGlobal descendant class, create an object instance of this class and
set ScriptParser.ScriptGlobal property to this instance.

© 2016 http://delphihtmlcomponents.com

26 HTML Scripter

5 Expressions
TScriptExpression class is designed for evaluating expressions of any type, including
function calling. This class can be used separately from TScriptParser class to evaluate
expression and obtain result without creating ScriptParser instance.

5.1 Expression evaluation
For expressions without parameters simply call class function TScriptExpression.Evaluate.
Example:

t := TScriptExpression.Evaluate('Now() + 1');

For expression that contain variables, TScriptExpression instance should be created:
E := TScriptExpression.CreateandParse('s + IntToStr(t)');
E['t'] = 1;
E['s] := 'test';
a := E.Calc;

5.2 Passing parameters
Use TScriptExpression.Variables property to set expression variable value.
Variables object can be accessed via Expression.Parser.Vars property.

5.3 Using custom variables getter/setter

In some cases it is useful to have custom getter and setter for expression variables. For
example, expression is used to calculate field value in Dataset, and all variables should be
mapped to Dataset fields:

procedure GetDatasetVar (const V: TExVariable);
var F: TField;

begin
F := Dataset.FindField(V.Name) ;
if Assigned(F) then
V.fValue := F.AsVariant
end;

procedure SetDatasetVar (const V: TExVariable);
var F: TField;

begin
F := Dataset.FindField(V.Name) ;
if Assigned(F) then
F.Value := V.fValue;

© 2016 http://delphihtmlcomponents.com

Expressions

27

end;

E := TScriptExpression.CreateandParse ('MyFieldl:=MyField2+MyField3"') ;
E.OnGetVar := GetDatasetVar;

E.OnSetVar := SetDatasetVar;

E.Calc;

5.4 Evaluating expression inside script

Similarly to javascript eval function, library supports runtime expression evaluation.
Example:

t := 100;
k := 200;
Result := eval('t+k');

© 2016 http://delphihtmlcomponents.com

28

HTML Scripter

6.1

6.2

6.3

Executing script

Executing script

To execute script main block call TScriptParser.Run.
Example:

uses htscriptgui;

SP := THtScriptParser.Create ('ShowMessage (''test''); "),
SP.Run;

Accesing global variables

To get or set value of global script variable use TScriptParser.Variables (or
TScriptParser.Objects for objects) property.

Example:
t := Script.Variables['myvar'];
Script.Variables['myvar'] := 100;

To check is variable already registered and get variable object use TScriptParser.Vars
property.

Is variable registered:
if Script.Vars.GetVariable('MyVar') then ...

Enumerate all variables:

for i := Script.Vars.Count - 1 do
List.Add (Script.Vars[i] .Name) ;

Calling script function

Any script function can be called from Delphi code.
Example:

t := Script.RunFunction ('MyFunc', [1, 'test']);
For faster calling you can get reference to a function and call it via reference:

var SF: TScriptFunc;
begin

© 2016 http://delphihtmlcomponents.com

Executing script 29

6.4

6.5

SF := Script.FindFunction ('MyFunc') ;
if Assigned(SF) then
t := Script.RunFunction(SF, [1l, 'test'])
else
ShowMessage ('Function not found');
end;

Calling script function with var (out) parameters

To call script function with var or out parameters use RunVarFunction method.
Example:

var SP: THtScriptParser;
PA: array of variant;
begin
SP := THtScriptParser.Create('function x(var a: integer): string; begin a:=a+100; Rg
SP.Parse;
SetLength (PA, 1);
PA[O] := 100;
SP.RunVarFunction ('x', PA);
ShowMessage (PA[0]) ;

For faster calling you can get reference to function and call it via reference:

SF := Script.FindFunction('x"');
if Assigned(SF) then
t := Script.RunVarFunction (SF, PA)

Executing code block

It is possible to execute additional script (code block) in context of current script without
changing and recompiling original script.
At first step the script is converted into anonymous function and then executed.

Example:

var SF: TScriptFunc;

begin
SF := Script.CreateAnonymousFunction ('MyGlobalVar := MyScriptFunc (100, '"'test'')');
Script.RunFunction (SF, [])

end;

Code block can contain function with parameters.
Example:

var SF: TScriptFunc;
begin

© 2016 http://delphihtmlcomponents.com

HTML Scripter

SF := Script.CreateAnonymousFunction ('function(p: integer; begin MyGlobalVar := MyS«
Script.RunFunction (SF, [100]);
end;

Predefined variables

Following global variables are defined by script engine:

= Scripter: THtScriptParser - ScriptParser instance
= Console: THtConsole - debug console

Custom global variables can be defined using HtScriptGlobal class, f.e.

HtScriptGlobal.Objects['application'] := Application;
HtScriptGlobal.Variables|['appname'] := 'My Application';

Executing script from script

Script can create and run another scripter instance.
Example:

P := THtScriptParser.Create('Result:=x+100;');
P.Variables['x']:=100;

P.Run();

ShowMessage(P.Variables['ResultT);

Units/Uses

Script can be divided into separate units. To use external units in script create
THtScriptParser.OnGetUnit event handler.
Example:

uses htutils;

function TForml.OnGetUnit (Sender: THtScriptParser; const UnitName: string;

var UnitText: string): boolean;
begin
Result := false;
if FileExists(ScriptsPath + UnitName + '.pas') then
begin
UnitText := FiletoStr(ScriptsPath + UnitName + '.pas');
Result := true
end;
end;

To use this event handler for all Scripter instances assign it to HtScriptGlobal.OnGetUnit.

© 2016 http://delphihtmlcomponents.com

Executing script 31

6.9 Error address and callstack

When exception is raised during script execution, call stack and source line are saved into
Parser.ExceptionStack and ExceptionLine properties.

Exceptions raised by scripter engine itself are of EHtScriptException type and contains the
following fields:

e Sender: THtScriptParser - Scripter

e SourcePos: integer - absolute position in source code

e Line:integer - line in source code

e ScriptUnit: string - name of unit (empty for main program).

© 2016 http://delphihtmlcomponents.com

32

HTML Scripter

71

7.2

Debugging

ScriptDebugger class

For debugging a script it is necessary to implement a THtScriptDebugger abstract class.
It has following methods:

THtScriptDebugger = class
public

/// Executed before script run
procedure OnRun (Sender: THtScriptParser); virtual;

/// Executed after script run
procedure OnStop (Sender: THtScriptParser); virtual;

/// Executed when script is paused
procedure OnPause (Sender: THtScriptParser); virtual;

/// Executed when script continue running
procedure OnResume (Sender: THtScriptParser); wvirtual;

/// Used in Paused mode to process application messages. Simply call Application..

procedure ProcessMessages (Sender: THtScriptParser); wvirtual;

/// Triggered by Console.Log method in script

procedure OnConsolelog (MessageType: THtConsoleMessageType; const s: string); virtt

end;

After implementing a class set HtScriptDebuggerGlobal global variable.
Conrolling script execution

Following methods can be used to control script execution:

/// Execute scipt to next line without tracing into functions
procedure StepOver;

/// Execute scipt to next line with tracing into functions
procedure Tracelnto;

/// Stop script execution on ALine line.
procedure RuntoCursor (ALine: integer);

/// Stop script execution on ALine line.
procedure RunUntilReturn;

/// Continue script execution i1f script was paused.
procedure Continue;

© 2016 http://delphihtmlcomponents.com

Debugging 33

/// Break execution
procedure Halt;

7.3 Getting variables

To get variable value in current context (taking into account current function stack), for
example, to display variable value in debug watch window, use

function GetDebugVariable (const Name: string): TExVariable;

7.4 Console and logging

Console object (similarly to Javascript console https://developer.mozilla.org/en/docs/Web/
API/Console) is intended for logging and profiling purposes.

Following Console object methods are available:

Log(Message: string) - output message to console window

Info(Message: string) - output info message to console window

Warn(Message: string) - output warning message to console window

Error(Message: string) - output error message to console window

Assert(Condition: boolean; Message: string) - check condition and output message into
console window (also exception is raised).

7.5 Profiling

Script execution can be profiled using Console Time and TimeEnd methods.
Call Time before profiled code and TimeEnd after, with the same text key.
Example:

Console.Time ('MyExecution time is');

MyFunction () ;
Console.TimeEnd ('MyExecution time is');

Result will be passed to the script debugger object via OnConsoleLog method.
7.6 Breakpoints

Use following methods to manage script breakpoints:

procedure AddBreakpoint (ALine: integer; APassCount : integer = 0; const ACondition:
procedure RemoveBreakpoint (ALine: integer);

procedure ToggleBreakpoint (ALine: integer);

function HasBreakpointAt (ALine: integer): boolean;

© 2016 http://delphihtmlcomponents.com

https://developer.mozilla.org/en/docs/Web/API/Console
https://developer.mozilla.org/en/docs/Web/API/Console

HTML Scripter

Expression evaluation

To evaluate exppression in a current context, use Evaluate function.
Example:

s := Script.Evaluate('inttostr(a)');

© 2016 http://delphihtmlcomponents.com

Using script in HTML document 35

8 Using script in HTML document

8.1 Introduction

To use scripting library in HTML documents add htdefscriptadapter unit to uses list.
Scripts are defined in HTML document similarly to standard Javascript scripts, but with type
attribute set to passcript or text/passcript.

Example:

<script type="passcript">
procedure Test () ;
begin
document.getElementbyId('myid') .innerHTML := 'test';
end;
</script>

Note, that <script> tag with type set to passcript is necessary event if its content is empty,
otherwise script adapter will not process elements and document events. This is done to
prevent attempts of executing pascal script on normal HTML documents containing
Javascript in elements events.

Predefined variables
Following variables are defined when script in running inside an HTML document:

» document: THtDocument - current document

» window : TControl - control that owns document (for example THtPanel)

= this: TElement - current element

= event: THtMouseEvent - processed event

» dragged: TElement - dragged element (in drag events)

» form: TForm - current form (if script is running inside HTML control placed on a form)

Custom variables
Any object variable can be registered in script adapter for use in script:

HtPanel.Doc.ScriptAdapter.RegisterObject (const Name: string; Value: TObject);

8.2 JQuery support

Subset of JQuery functionality is supported via $() function when script is executed inside
HTML Document.

Syntax:

$(Selector, [Context]).Operation

© 2016 http://delphihtmlcomponents.com

HTML Scripter

Selector is any valid CSS selector, for example

S('#id') - elements with id="id".
$('.myclass') - elements having CSS class myclass.
$('div') - all div elemets.

Context is optional context element. If context is passed, JQuery will start searching from
this element.

Result is list of found elements. Operation is executed on each element in the list.

Some of operations returns element list to allow chaining.

Following operations are available:

property Attr[Name]
Get or set elements attribute value. When list contains several elements result is list
of attribute values separated by comma.

property HTML: string
Get (for first element) or set inner HTML.

property CSS[name: string]
Add CSS wvalue.

function Each (Proc: procedure (Element): THtNodeList
Execute procedure Proc on each element.

function AddClass (ClassName: string): THtNodelList
Add CSS class

function RemoveClass (ClassName: string): THtNodeList
Remove CSS class

function ToggleClass (ClassName: string): THtNodelist
Toggle CSS class

function On (EventName: string; Code: string): THtNodelist
Set event handler for event EventName

function First: THtNodelist
return list containing first element only

function Last: THtNodelist
return list containing last element only

function Parent: THtNodelist
return list containing parent elements of all elements

function Children: THtNodelList;

© 2016 http://delphihtmlcomponents.com

Using script in HTML document 37

8.3

return list containing chilren of all elements

procedure Sort (Compare: function(El, E2: TElement): integer, Asc: boolean)
sort list using Compare function

Example

Make rows of table #table selectable (user can click on row to select or deselect it)

$('"#table tbody tr').On('click', 'this.ToggleClass(''selected'')"');

Events

Supported element events:
onmousemove - mouse is moved over an element
onclick - element is clicked

ondbilclick - element is double-clicked
onmouseover - mouse enters an element
onmouseout - mouse leaves an element
onmousedown - left button pressed
onmouseup - left button released

onchange - for input elements

onblur - element lose focus (for input element)
onscroll - element was scrolled

onresize - element size is changing
onresizeend - element size was changed

Events fired on the draggable target (the source element):
ondragstart - occurs when the user starts to drag an element

ondrag - occurs when an element is being dragged

ondragend - occurs when the user has finished dragging the element

Events fired on the drop target:

ondragenter - mouse enters an element while dragging
ondragleave - mouse leaves and element while dragging
ondrop - other element is dropped on element

Example
Set div semitransparent when other element is dragged over it.

© 2016 http://delphihtmlcomponents.com

38

HTML Scripter

8.4

8.5

$('mydiv') .on('dragenter', 'if Event.Target.tag=''div'' then Event.Target.css (''opaci:
$('mydiv') .on('dragleave', 'if Event.Target.tag=''div'' then Event.Target.css (''opaci:

* HTML Report Library is required

Script inside HTML page can execute HTML Report using RunHtReport function.

function RunHTReport (Report, ContexXML: string): string;

Report parameter contains report text and ContextXML can be used for passing additional
parameters to report.

Example:
s:='<report-objects><object name="cust" '+
'sql="select * from customer where upper (company) like ''$%{{SEARCH}}%%'' order by

'</report-objects>'+
'"{{#cust .ROWDATA}} "'+
'<p><i class="fa fa-user"/> {{COMPANY} }</p>"'+
'{{/cust.ROWDATA}}"';

Res := RunHtReport (s, '<CONTEXT SEARCH="ab"/>');

Interactive hints

When script is running inside HtPanel, it is possible to show interactive hint window with
HTML document.
Example:

<script type="passcript">
procedure showhint;
begin
document.control.ShowFloatHint (this, '<h3>This is hint</h3>', true);
end;
</script>

Click me

function ShowFloatHint (Element: TElement; Hint: string; Animated: boolean);

Element: hint element - hint will be hidden when mouse leaves this element.
Hint: hint text.

© 2016 http://delphihtmlcomponents.com

Using script in HTML document 39

Animated - animated show.
8.6 Usage examples
8.6.1 Make table sortable

<script type="passcript">
S('#tableid th').on('click', 'this.upto(''table'').SortColumn:=this.Col;document.repa:
</script>

<table id="tableid">
<tr><th>header</th></tr>
<tr><td>3</td></tr>
<tr><td>2</td></tr>
<tr><td>1</td></tr>
</table>

8.6.2 Highlight list items starting with 'A’

procedure TestA (E: TElement);
begin
if AnsiStartsWith(E.Attr['name'], 'A') then
E.css('font-weight: bold;"');
end;

procedure Highlight () ;
begin

$("#ul 1i').Each(@TestA);
end;

8.6.3 Convert nested list into expandable tree

<style>

1li>ul {display: none}
1li.show>ul {display: block}
</style>

<script type="passcript'">

$('1li a').on('click', 'this.parent.toggleClass(''show'"')"');
</script>

Iteml

<1li>Subiteml</1i>

© 2016 http://delphihtmlcomponents.com

40 HTML Scripter

Subitem2

<1li>Sub-Sub-Iteml</1li>

</1i>

Subitem3</1i>

</1i>

8.6.4 Directory tree with background loading

*HTML Report Library is required.

<style>
body {font-family: Verdana; font-size
ul {list-style-type: none; transition
overflow: hidden}
a {text-decoration: none}
a:hover {text-decoration: underline}
li>ul {height: Opx}

: 1ldpx}
height 0.3s;

1i[type="DIRECTORY"]>img {display: none}

li.show>ul {height: auto}

1i {padding: 3px 3px}

.fa {color: green}
</style>

<script type='"passcript">

procedure ShowFiles();
begin

{ Disable onclick event for parent 1i nodes}

if Assigned(Event) then
event.StopPropagation () ;

{ file or processed directory }

if this.hasclass('processed') or

(this.Attr['type'] <> 'DIRECTORY') then

begin
{ open / close }
if this.Attr['type'] = 'DIRECTORY'

this.toggleClass ('show');
{ update folder icons }

then

$('li[type="DIRECTORY"]>1i"') .removeClass ('fa-folder-open-o').
addClass('fa') .addClass ('fa-folder-o0"');
S('li.show>i'") .removeClass ('fa-folder-o').

addClass ('fa-folder-open-o0');
document.Refresh () ;
exit;
end;
{ Report code }

s := '<report-objects><object name="files"

type="directory" '+

© 2016 http://delphihtmlcomponents.com

Using script in HTML document 41

' sql="{{DIR}}*.*"/></report-objects>'+
''+
"{{#files.ROWDATA}} "'+
'<1li dirname="{{PATH}} {{NAME}}" type="{{FILETYPE}}">'+
'<i/> {{NAME}}</1li>"'+
'"{{/files.ROWDATA}} '+

'';
Async (
function(E: TElement): string;
begin
Result := RunHtReport (s, '<CONTEXT DIR="'+E.attr['dirname']+'"/>");
end,
procedure (E: TElement; s: string);
begin
E.innerhtml := E.innerhtml + s;
S('1i').on('click', 'ShowFiles()"');

E.addClass ('processed');

document .Refresh () ;

$('1li[type="DIRECTORY"]>1i"') .addClass('fa"').
addClass ('fa-folder-o"');

E.addClass ('show');

S('li.show>i') .removeClass('fa-folder-o').

addClass ('fa-folder-open-o');

{ we need second Refresh for open/close animation.
First refresh calculate zero height, second
(after setting .show class) calculates 'auto' height and starts transition }

document.Refresh () ;

end,
[this]
) ;
end;

{ set onclick handler for 1list items }
S('1i').on('click', 'ShowFiles()"');

this := document.getElementbyId('root');
ShowFiles () ;

</script>

<1li id ="root" dirname="c:" type="DIRECTORY"><i/> <a>Root</1li>

8.6.5 Incremental search

*HTML Report Library is required.

When edit is changed, SetTimeout function adds ShowCustomers to queue with 500ms
delay. Next change of the edit, reset queued function and starts new.

ShowCustomers executes report via RunHtReport and passes result to #cust div element.

© 2016 http://delphihtmlcomponents.com

42 HTML Scripter

<style>

a {text-decoration: none}

a:hover {text-decoration: underline}
</style>

<script type="passcript">

procedure showcustomers() ;

begin
{ Report code }
s:='<report-objects><object name="cust" '+
'sql="select * from customer where upper (company) like ''$%${{SEARCH}}%%'' order by

'</report-objects>'+
'"{{#cust .ROWDATA}} "'+
'<p><i class="fa fa-user"/> {{COMPANY} }</p>"'+
'{{/cust.ROWDATA}}"';

Async (
function (value: string): string;
begin
Result := RunHtReport (s, '<CONTEXT SEARCH="' + AnsiUpperCase (value) + '""/>");
end,
procedure (value, s: string);
begin
S('"#cust') .html := s;
document.refresh () ;
end,

this.value
) ;
end;

</script>

<input type="text" onchange="if Assigned(custsearch) then ClearInterval (custsearch);
custsearch:=SetTimeout (@showcustomers, 300);">
<div id="cust"></div>

8.6.6 Infinite page

New portion is loaded when page is scrolled to bottom.

<style>
body {font-family: Verdana; font-size: 10px}
.fa {color: orange}
.item {padding: 5px 5px}

</style>

<script type="passcript">

procedure showcustomers () ;

begin
{ Report code }
s := '<report-objects><object name="cust" sgl="select * from customer"/></report-obj¢

© 2016 http://delphihtmlcomponents.com

Using script in HTML document 43

'{{#cust.ROWDATA}} '+
'<div class="item"><i class="fa fa-user"/> {{COMPANY}}</div>"+
"{{/cust.ROWDATA}}<div id="cust"></div>';
sl := RunHtReport (s, '<CONTEXT/>');
S('#cust') .html := s1;
{ clear id for old placeholder }
S("#cust') .first.Attr['id'] := '"';
document.refresh () ;
end;

procedure OnScroll () ;
begin
if document.innerheight - document.scrolltop - 50 < window.innerheight then
showcustomers () ;
end;

document.AddEventListener ('scroll', @onscroll);
</script>

Show Customers
<div id="cust"></div>

8.6.7 Calling script function from Delphi

Res := (HtPanell.Doc.ScriptAdapter as
THtDefScriptAdapter).SP.RunFunctionlfExists('MyScriptFunction', [Param1]);

© 2016 http://delphihtmlcomponents.com

44

HTML Scripter

9

Standard functions

Magic functions

Async (Proc, After: procedure);

Decode (valuel, resultl, [valueN, resultN], valueElse: variant):

ExceptionMessage () : string;
Iif (condition: boolean; IfTrue, IfFalse: variant): variant;

IfThen (condition: boolean; IfTrue, IfFalse: variant): variant;

InRange (Value: variant; Min, Max: variant): boolean;
ReleaseObject (A: TObject): TObject;
StrIn(s: string; vl1, v2, [..vN] : string): boolean;

SetLength (Value: string or array; Length: integer);
SetTimeout (Proc: procedure; Timeout: integer);

System unit

Assigned(var v): boolean;

Abs (X: double) : double

ArcTan (X: Extended): Extended
Cos (X: Extended) : Extended

Char (c: integer): char
Copy(s: string; Index, Count: integer): string
Dec (var value: integer; decrement: integer = 1);

Delete (var s: string; Index, count: integer);
Exp (X: Extended): Extended

Frac (X: Extended): Extended

High (A: array): integer;

Inc(var value: integer; increment: integer = 1);

Insert (Substring: string; var Target: string; Index: integer);

Length(s: string): integer
Ln (X: Extended): Extended
MkDir (s: string)

Odd (X: integer): boolean

Pred(x: integer): integer

ParamCount ()

ParamStr (Index: integer): string

Pos (const Substr, Str: string): integer

PosEx (const Substr, Str: string; Offset: integer): integer
Randomize ()

Random (ARange: integer): integer', @ Random);

RmDir (s: string)

Round (X: double): integer

Sgr (X: double) : double

Sgrt (X: Extended): Extended;', @Sqgrt);
Sin(X: Extended): Extended

Succ(x: integer): integer

Swap (x: integer): integer

variant;

© 2016 http://delphihtmlcomponents.com

Standard functions 45

Sleep (x: integer)

Tangent (X: Extended): Extended
Trunc (X: double): integer
UTF8Encode (s: string): ansistring

Windows unit

GetTickCount () : integer
SysUtils unit
Abort ()
AnsilowerCase(s: string): string

AnsiSameStr(sl, s2: string): boolean
AnsiSameText (sl, s2: string): boolean

AnsiUpperCase(s: string): string

AnsiQuotedStr(s: string): string

ChangeFileExt (FileName, Extension: string): string
CompareText (sl, s2: string): integer

CurrentYear: integer

DirectoryExists (Path: string): boolean

Date () : ThateTime

DayOfWeek (Date: TDateTime): integer

DeleteFile (FileName: string): boolean

EncodeDate (Year, Month, Day: integer): TDateTime
EncodeTime (Hour, Min, Sec, sl100: integer): TDateTime
ExtractFilePath(FileName: string): string

ExtractFileName (FileName: string): string
ExtractFileExt (FileName: string): string

FileExists (FileName: string): boolean

FileCreate (FileName: string): integer

FileOpen (FileName: string; Mode: integer): integer
FileClose (Handle: integer)

FileWrite (Handle, Buffer, Count: integer): integer
ForceDirectories (Dir: string)

Format (s: string; Param: array of const): string;
FormatDateTime (Format: string; Value: TDateTime): string
FormatFloat (Format: string; Value: extended): string

FloatToStr (Value: extended): string

FloatToStrF (Value: Extended; Format: integer; Precision,
IncMonth (Date: TDateTime; NumberOfMonths: Integer): TDateTime

IntToStr(n: integer): string

IntToStr64 (n: cardinal): string

IntToHex (Value: Integer; Digits: Integer): string;
LowerCase(s: string): string

Now () : TDateTime

QuotedStr(s: string): string

RenameFile (OldName, NewName: string): Boolean
ReplaceStr (S, OldPattern, NewPattern: string): string

StringReplace (S, OldPattern, NewPattern: string): string

StrToInt(s: string): integer

Integer):

© 2016 http://delphihtmlcomponents.com

string

46

HTML Scripter

StrToIntDef (S: string; Default: Integer): Integer
StrToFloat (S: string): Extended;

StrToFloatDef (S: string; Default: Extended): Extended;

StrToBool (s: string): boolean
StrToTime (s: string): TDateTime
StrToDate(s: string): TDateTime
StrToDateTime (s: string): TDateTime
Trim(s: string): string

TrimLeft (s: string): string

TrimRight (s: string): string
TimetoStr(t: TDateTime): string
SetCurrentDir(Dir: string): Boolean
SameStr(sl, s2: string): boolean
SameText (sl, s2: string): boolean
UpperCase(s: string): string

DateUtils unit

YearOf (AValue: TDateTime): Word

MonthOf (AValue: TDateTime): Word

WeekOf (AValue: TDateTime): Word

DayOf (AValue: TDateTime): Word

HourOf (AValue: TDateTime): Word

MinuteOf (AValue: TDateTime) : Word

SecondOf (AValue: TDateTime): Word

MillisecondOf (AValue: TDateTime) : Word;
StartOfTheYear (const AValue: TDateTime): TDateTime
EndOfTheYear (const AValue: TDateTime): TDateTime
StartOfTheMonth (const AValue: TDateTime): TDateTime
EndOfTheMonth (const AValue: TDateTime): TDateTime
StartOfTheWeek (const AValue: TDateTime): TDateTime
EndOfTheWeek (const AValue: TDateTime): TDateTime

Math unit

Ceil (X: single): integer
Floor (X: single): integer
Power (Base, Exponent: Extended) : Extended;

Sign (AValue: double): integer;

HTML functions

AnsiStartsWith (s, start: string): boolean
AnsiEndsWith (s, start: string): boolean
StartsWith (s, start: string): boolean
EndsWith (s, start: string): boolean

FindChar (c: char; s: string; Start: integer = 1): integer

BlankString(s: string): boolean
CalcStrCrc32(s: string): cardinal

HTMLEncode (s: string; Newlength : integer = -1): string

HTMLEncodeAttr (s: string; Newlength : integer = -1):

string

© 2016 http://delphihtmlcomponents.com

Standard functions 47

HTMLColortoHex (Color: cardinal): string

HTMLColortoStr (Color: cardinal): string

iStrToFloat (s: string): single

ObjecttoXML (O: TObject; ClassProp: boolean = false; Node: THtXMLNode = nil; UpperCa:
StrToDateFmt (s: string; format : string =''dd.mm.yyyy hh:nn:ss''): TDateTime

© 2016 http://delphihtmlcomponents.com

48

HTML Scripter

10

Standard constants

MaxInt
MaxWord
MaxCurrency
Pi

© 2016 http://delphihtmlcomponents.com

Standard classes

11 Standard classes

TObject
Exception
TStrings
TStringList
TList

TBits
TCollection
TComponent
THtXMLNode
THtInetClient

htscriptgui unit
TOpenDialog
TSaveDialog
TFileOpenDialog
TFileSaveDialog
TFindDialog
TForm

TButton

TLabel
TGroupBox
TMemo
TComboBox
TCheckBox
TRadioButton
TListBox
TShape

TImage

TTimer

TPanel

TSplitter
TLabeledEdit
TButtonedEdit

© 2016 http://delphihtmlcomponents.com

	Table of Contents
	1 Introduction
	2 Getting started
	3 Script Language
	3.1 Overview
	3.2 Script structure
	3.3 Expressions
	3.4 Comments
	3.5 Statements
	3.6 Variables
	3.7 Arrays
	3.8 Numbers
	3.9 Function declaration
	3.10 Anonymous functions
	3.11 Reference to function
	3.12 Ordinal types helpers
	3.13 Asynchronous functions

	4 Using Delphi classes and functions
	4.1 Registeging Delphi classes and methods
	4.2 Default properties
	4.3 Generic method handler
	4.4 Registering for-in enumerators
	4.5 Registering Delphi functions
	4.6 "Set of" parameters
	4.7 Array parameters
	4.8 Registering DLL functions
	4.9 Magic functions
	4.10 Registering constants
	4.11 Registering enumerations
	4.12 Creating and destroying objects
	4.13 Using script functions as Delphi event handler
	4.14 Using script functions for callback
	4.15 Changing or disabling standard functions and classes set

	5 Expressions
	5.1 Expression evaluation
	5.2 Passing parameters
	5.3 Using custom variables getter/setter
	5.4 Evaluating expression inside script

	6 Executing script
	6.1 Executing script
	6.2 Accesing global variables
	6.3 Calling script function
	6.4 Calling script function with var (out) parameters
	6.5 Executing code block
	6.6 Predefined variables
	6.7 Executing script from script
	6.8 Units/Uses
	6.9 Error address and callstack

	7 Debugging
	7.1 ScriptDebugger class
	7.2 Conrolling script execution
	7.3 Getting variables
	7.4 Console and logging
	7.5 Profiling
	7.6 Breakpoints
	7.7 Expression evaluation

	8 Using script in HTML document
	8.1 Introduction
	8.2 JQuery support
	8.3 Events
	8.4 AJAX
	8.5 Interactive hints
	8.6 Usage examples
	8.6.1 Make table sortable
	8.6.2 Highlight list items starting with 'A'
	8.6.3 Convert nested list into expandable tree
	8.6.4 Directory tree with background loading
	8.6.5 Incremental search
	8.6.6 Infinite page
	8.6.7 Calling script function from Delphi

	9 Standard functions
	10 Standard constants
	11 Standard classes

