
© 2016 http://delphihtmlcomponents.com

HTML Scripter





3Contents

3

© 2016 http://delphihtmlcomponents.com

Table of Contents

Foreword 0

Part I Introduction                                                                                          6

Part II Getting started                                                                                     7

Part III Script Language                                                                                  8

1 Overview ............................................................................................................................. 8

2 Script structure .................................................................................................................... 8

3 Expressions ......................................................................................................................... 9

4 Comments ......................................................................................................................... 10

5 Statements ........................................................................................................................ 10

6 Variables ........................................................................................................................... 11

7 Arrays ................................................................................................................................ 12

8 Numbers ............................................................................................................................ 13

9 Function declaration ......................................................................................................... 13

10 Anonymous functions ........................................................................................................ 13

11 Reference to function ........................................................................................................ 14

12 Ordinal types helpers ........................................................................................................ 14

13 Asynchronous functions ..................................................................................................... 15

Part IV Using Delphi classes and functions                                             16

1 Registeging Delphi classes and methods .......................................................................... 16

2 Default properties .............................................................................................................. 17

3 Generic method handler ................................................................................................... 17

4 Registering for-in enumerators .......................................................................................... 18

5 Registering Delphi functions ............................................................................................. 19

6 "Set of" parameters ........................................................................................................... 20

7 Array parameters .............................................................................................................. 20

8 Registering DLL functions ................................................................................................. 20

9 Magic functions ................................................................................................................. 20

10 Registering constants ........................................................................................................ 21

11 Registering enumerations ................................................................................................. 22

12 Creating and destroying objects ........................................................................................ 22

13 Using script functions as Delphi event handler .................................................................. 23

14 Using script functions for callback ..................................................................................... 23

15 Changing or disabling standard functions and classes set ................................................ 24



HTML Scripter4

© 2016 http://delphihtmlcomponents.com

Part V Expressions                                                                                       26

1 Expression evaluation ....................................................................................................... 26

2 Passing parameters ........................................................................................................... 26

3 Using custom variables getter/setter ................................................................................. 26

4 Evaluating expression inside script ................................................................................... 27

Part VI Executing script                                                                                28

1 Executing script ................................................................................................................. 28

2 Accesing global variables ................................................................................................. 28

3 Calling script function ....................................................................................................... 28

4 Calling script function with var (out) parameters ............................................................... 29

5 Executing code block ........................................................................................................ 29

6 Predefined variables ......................................................................................................... 30

7 Executing script from script ............................................................................................... 30

8 Units/Uses .......................................................................................................................... 30

9 Error address and callstack ............................................................................................... 31

Part VII Debugging                                                                                          32

1 ScriptDebugger class ........................................................................................................ 32

2 Conrolling script execution ............................................................................................... 32

3 Getting variables ............................................................................................................... 33

4 Console and logging ......................................................................................................... 33

5 Profiling ............................................................................................................................ 33

6 Breakpoints ....................................................................................................................... 33

7 Expression evaluation ....................................................................................................... 34

Part VIII Using script in HTML document                                                    35

1 Introduction ....................................................................................................................... 35

2 JQuery support .................................................................................................................. 35

3 Events ................................................................................................................................ 37

4 AJAX ................................................................................................................................. 38

5 Interactive hints ................................................................................................................. 38

6 Usage examples ................................................................................................................ 39

Make table sortable ............................................................................................................................................. 39

Highlight list items starting w ith 'A' ................................................................................................................. 39

Convert nested list into expandable tree ....................................................................................................... 39

Directory tree w ith background loading ......................................................................................................... 40

Incremental search ............................................................................................................................................. 41

Infinite page .......................................................................................................................................................... 42

Calling script function from Delphi ................................................................................................................... 43

Part IX Standard functions                                                                           44



5Contents

5

© 2016 http://delphihtmlcomponents.com

Part X Standard constants                                                                          48

Part XI Standard classes                                                                              49

Index 0



HTML Scripter6

© 2016 http://delphihtmlcomponents.com

1 Introduction

HTML Scripter is a cross-platform and 100% native scripting library for Delphi. It supports

most of Object Pascal language features including modern anonymous functions and for-in

statement. Scripter engine is GUI-independent and threadsafe, so can be used in both

desktop and server applications.

Library is optimized for both execution and parsing/compiling performance and can be

used in high-loaded applications. It also support special features, like JQuery $() function

for using inside HTML Component Library THtDocument class.

Supported platforms:
· Win32/VCL

· Win64/VCL

· Win32/FMX

· Win64/FMX

· OSX

· Android

· iOS

· Linux

Supported Delphi versions

Delphi 5 - Delphi 10.3 Rio.

Main features
· Extremely fast parsing and compilation.

· Using Delphi methods and properties via RTTI (2010+).

· Easy registration of Delphi functions (no need for special intermediate functions, just pass

function address and description).

· Anonymous functions.

· for .. in .. statement.

· DLL functions.

· Ordinal types helpers

· Using script functions as Delphi event handlers.

· Debugging and logging support.

· Profiling

· Set of and array parameters.

· Asynchronous and delayed execution

· HTML documents integration (JQuery $ operator)



Getting started 7

© 2016 http://delphihtmlcomponents.com

2 Getting started

Simplest example of how to use THtScriptParser:

uses htscriptparse, htscriptgui;
...

procedure TForm1.ButtonClick(Sender: TObject);
var SP: THtScriptParser;
begin
  SP := THtScriptParser.Create('ShowMessage(''test'');');
  try
    SP.Run;
  finally
    SP.Free
  end;
end;



HTML Scripter8

© 2016 http://delphihtmlcomponents.com

3 Script Language

3.1 Overview

Scripter language syntax is almost identical to Object pascal syntax except the following:

· Variables declaration is possible but not required (if soRequireVarDeclaration is not set in

Options).

· Classes declaration is not supported

3.2 Script structure

Script has the following structure: (all sections are optional)

[program <name>; | unit <name>; ] 

[interface]

[uses <unit list>]

[const and functions declarations]

[main code block | implementation]

[initialization]

Example:

const 
  MyText = 'Sample text';

procedure Sample(s: string);
begin
  ShowMessage(s);
end;

Sample(MyText);

Example of unit:

unit MyTest;

interface

function MyInttoStr(Value: integer): string;

implementation



Script Language 9

© 2016 http://delphihtmlcomponents.com

function MyInttoStr(Value: integer): string;
begin
  if Value = 0 then
    Result := ''
  else
    Result := InttoStr(Value)
end;

end.

3.3 Expressions

Following operations are allowed in expressions

* , / , and , + , - , or , <> , >=, <= , = , > , < , div , mod , xor , shl , shr, ^, @, is, not, in, not in

"in" operation can be used with arrays: 
  if s in ['abc', 'def'] then ...

sets or ranges
    if n in [1..10] then

and classes with enumerators (see Registering for-in enumerators)

Example:

  L := TStringList.Create();
  L.Add('abc');
  L.Add('def');
  if s in L then ...

is operator supports simple types:
  if k is string then ...;

Compound assignment operators:

  k += 2;
  k -= 2;
  k *= 2;

Ternary operator:

a := if b = 1 then 2 else 3;

case operator:

a := case b of 1: 2; 1+1: 4-1; else 4 end;

18



HTML Scripter10

© 2016 http://delphihtmlcomponents.com

3.4 Comments

Following comment styles can be used:

{ multiline comment }

(* multiline comment 2 *)

// .. single line comment

3.5 Statements

List of supported statements:

Assignment:
<variable or property> := <expression>;
(including compound assignments +=, -=, *=)

if <expression> then 
  <statement> 
[else <statement>]

for <variable> := <from expression> to <to expression> do
  <statement>

for <variable> in <expression> [index <variable>] do
  <statement>

"for in" statement has optional index variable which is set to current loop iteration.
Note that when using with string starting with 1 (ZEROBASEDSTRINGS OFF) loop will start from 1.

loop variable can be declared inside for statement, with or without type:

for var i: integer := 1 to N do
for var i := 1 to N do

while <expression> do 
  <statament>

repeat 
 <statement>
until <expression>

case <expression> of
  <expression>: <statement>;
  ..
  <expression>: <statement>;
 [ else <statement> ] 
end;



Script Language 11

© 2016 http://delphihtmlcomponents.com

case expressions can be of any type.

raise <exception object>;

try
  <statement>
except 
  [on <variable>: <type> do ]
  <statement>
end;

try
  <statement>
finally
  <statement>
end;

3.6 Variables

Variables can be declared inside function body, before begin.

All variables declared inside function, function parameters and Result variable is treated as

local and does not affect script global variables.

For example:

procedure Test();
var a: integer;
begin
  a := 100;
end;

a := 200;
Test();

// a is still 200

variable declaration can contain initial value:

var a: integer = 0;

Variables used as for statement iterator in local functions are treated as local variables.

Variables ordinal types:
· array

· ansistring

· boolean

· byte

· cardinal

· char

· currency



HTML Scripter12

© 2016 http://delphihtmlcomponents.com

· double

· extended

· integer

· int64

· longint

· pchar

· pointer

· rawbytestring

· string

· single

· set

· smallint

· TDatetime

· variant

· widestring

· word

3.7 Arrays

Library supports single-dimensional arrays.

Arrays can be passed as function parameters, for example

s := Format('Value is %s', [value]);

and assigned in code:

a := [1, 2, 3];

Following functions can be used on arrays:

High() - array high bound

Length() - array length

SetLength() - set array length

[index]  - get or set array element

Arrays supports in operator, f.e. 

if 5 in a then ...

and can be used in for-in statements:

for x in a do ...



Script Language 13

© 2016 http://delphihtmlcomponents.com

3.8 Numbers

Supported number formats:

123  // integer

123.45 //float

123.45e2 //float

$A1B2 //Hex

%1110101 //Binary

3.9 Function declaration

Script function has the following structure:

procedure|function <name>( [parameters] ) [: <result type>]);
[ var <variables>; ]
begin
 <function body>
end;

Example:

function Substring(s: string; Start, Len: integer): string;
begin
  Result := copy(s, Start, Len)
end;

functions can have default parameters.

Example:

function Substring(s: string; Start: integer = 1; Len: integer = MaxInt): string;
begin
  Result := copy(s, Start, Len)
end;

3.10 Anonymous functions

Library supports declaration of anonymous functions. Anonymous functions can be passed

as parameter or assigned to variable.

Example:

t := function(s: string): string; 
     begin
       Result := copy(s, 2, MaxInt) 



HTML Scripter14

© 2016 http://delphihtmlcomponents.com

     end);
ShowMessage(t('123'));

3.11 Reference to function

Variables can contain reference to any function defined in script or registered from Delphi

code.

Example:

t := @ShowMessage;
t('test');

3.12 Ordinal types helpers

Ordinal types helpers are available  for Delphi XE4+.

Helpers (from SysUtils unit) are available for the following types:

· string

· single

· double

· integer

For example, you can write

ShowMessage('abc'.ToUpper());
s := 'test';
s1 := s.substring(1, 2);

Overloaded helper methods

Scripter can distinct between overloaded helper methods with different number of

parameters.

For example, TStringHelper has two Substring methods:

    function Substring(StartIndex: Integer): string; overload;
    function Substring(StartIndex: Integer; Length: Integer): string; overload;

You can use both:

a.SubString(1) and a.SubString(1, 3)

 



Script Language 15

© 2016 http://delphihtmlcomponents.com

3.13 Asynchronous functions

Library has several build-in functions providing asynchronous code execution.

Asynchronous execution

procedure Async(AsyncFunction, AfterFunction);

AsyncFunction: function: variant;
AfterFunction: procedure(Value: variant);

AsyncFunction is executed in separate thread. When execution is finished, AfterFuncion is

executed in a main thread context, and result of AsyncFunction is passed as AfterFunction

parameter.

Passing parameters

Asynchronous function can access global variables, but they can be changed in a main

thread while asynchronous function is executed. Values can be passed directly to both

AsyncFunction and AfterFunction using third parameter of Async. Example:

Async(
  function(n: integer) begin Result := n + 1 end, 
  function(n, res: integer) begin ... end, 
  [123]
);

Both functions should have same set of parameters, but AfterFunc also have additional

parameter for passing AsyncFunction result.

Delayed execution

Similarly to Javascript SetTimeout, there is 

procedure SetTimeout(AFunction: procedure; Timeout: integer);

AFunction is executed in a main thread context after Timeout milliseconds.

Timer can be reset using ClearInterval function. Example:

t := SetTimeout(@MyFunc, 500);
ClearInterval(t);



HTML Scripter16

© 2016 http://delphihtmlcomponents.com

4 Using Delphi classes and functions

4.1 Registeging Delphi classes and methods

Registration of  Delphi class is necessary (for Delphi 2009+) only in following cases

· object of this class will be created in script via constructor 

· class is used in 'is' operator

· object of this class is used in for-in statement.

· RTTI is disabled for the class.

Classes can be registered for global usage (in any script) or for single Scripter instance.

To register global class use HtScriptGlobal instance for registration.

Delphi class registration:

  Scripter.RegisterClass(<constructor declaration>, <constructor>, <class>);

Example:

  HtScriptGlobal.RegisterClass('Create()', @TStringList.Create, 
   TStringList);

Registering methods and properties: 

For Delphi 2009+ and classes with RTTI enabled, registering properties and methods is

optional. All properties and methods that has RTTI or Extended RTTI will be available in

script without registration.

Example of registering class with properties and methods:

  TStringsHack = class(TStrings);

  with HtScriptGlobal.RegisterClass('Create()', @TStrings.Create, TStrings) do
  begin
   RegisterProperty('Count', 'integer', @TStringsHack.GetCount, nil);
   RegisterProperty('Items', 'string', @TStringsHack.Get, @TStringsHack.Put,
     'integer', true);
   RegisterProperty('Objects', 'TObject', @TStringsHack.GetObject, 
     @TStringsHack.PutObject, 'integer');
   RegisterProperty('Text', 'string', @TStringsHack.GetTextStr, 
     @TStringsHack.SetTextStr);
   RegisterMethod('Add(const s: string)', @TStrings.Add);
   RegisterMethod('AddObject(const s: string; O: TObject)', 
     @TStrings.AddObject);
   RegisterMethod('Delete(Index: integer)', 

mailto:@TStringList.Create,
mailto:@TStringsHack.Put
mailto:@TStringsHack.GetObject,
mailto:@TStringsHack.GetTextStr,


Using Delphi classes and functions 17

© 2016 http://delphihtmlcomponents.com

     @TStrings.Delete);
   RegisterMethod('Exchange(Index1, Index2: integer)', 
     @TStrings.Exchange);
   RegisterMethod('Insert(Index: Integer; const s: string)', 
     @TStrings.Insert);
end;
 

4.2 Default properties

For Delphi versions with extended RTTI support (2010+) default properties are determined

automatically.

Simply call them with standard syntax:

StringList[i] := 'abc';

4.3 Generic method handler

Generic method handlers are intended for processing several class methods or properties in

one handler. When class has registered generic method handler, all calls to class methods

or object instance methods and properties are first processed by generic handler.

For example it can be used for implementing SOAP/REST client class where all methods

calls will be passed directly to a server.

To register generic method handlers, declare procedure of the following type:

function(const Sender: TScriptParser; const Instance: TObject;
  const MethodName: string; var Params: TScriptStack; StackTop, 
  AParamCount: integer; IsSetter: boolean; var Res: Variant): boolean;

and set GenericHandler property of the class: 

  HtScriptGlobal.RegisterClass('create()', @TTestClass.Create, 
    TTestClass).GenericHandler := MyGeneric;

When IsSetter is true, method is property setter and new value is passed in Res variable, in

other cases method should return value in Res.

Handler should return true if method is processed successfully, otherwise standard

method/property processing will be used.

Generic handler will be used even when it is registered to object class ancestor, but only

first found handler will be executed. For example:

type
  C1 = class;
  C2 = class(C1);
  C3 = class(C2);

mailto:@TTestClass.Create,


HTML Scripter18

© 2016 http://delphihtmlcomponents.com

if generic handlers are registered for C1 and C2 and instance is of class C3, only handler for

C2 will be called.

For class methods (including constructor) Instance parameter contains nil.

Example of generic handler for TDataset.Fields property.

Currently this property cannot be used properly inside script because it is declared as

  Fields: TFields

instead of

 Fields[Index: integer]: TField.

function TDatasetGenericHandler(const Sender: THtScriptParser; const Instance: TObject;
  const MethodName: string; var Params: TScriptStack; StackTop, AParamCount: integer; IsSetter: boolean; var Res: Variant): boolean;
begin
  Result := false;
  if SameText(MethodName, 'fields') then
  begin
    Result := true;
    Res := Object2Variant((Instance as TDataSet).Fields[Params[StackTop].Value]);
  end;
end;

initialization

 HtScriptGlobal.RegisterControlClass(@TDataSet.Create, TDataSet).GenericHandler := TDatasetGenericHandler;

4.4 Registering for-in enumerators

To use an object of some class in for-in statement it is necessary to register a class

enumerator.

Class enumerator is a descendant of abstract THtScriptEnumerator class:

  THtScriptEnumerator = class
  public

    ///<summary> Create enumerator for Instance object</summary>
    constructor Create(const Instance: TObject); virtual; abstract;

    ///<summary> Move to next item. Return false if end of list is reached </summary>
    function Next: boolean; virtual; abstract;

    ///<summary> Get current item </summary>
    procedure GetCurrent(var Value: variant); virtual; abstract;
  end;

Example of enumerator implementation:

constructor TStringListEnumerator.Create(const Instance: TObject);
begin
  fIndex := -1;
  fList := Instance as TStringList;



Using Delphi classes and functions 19

© 2016 http://delphihtmlcomponents.com

end;

procedure TStringListEnumerator.GetCurrent(var Value: variant);
begin
  Value := fList[fIndex]
end;

function TStringListEnumerator.Next: boolean;
begin
  inc(fIndex);
  Result := fIndex < fList.Count;
end;

Registering class enumerator:

  with HtScriptGlobal.RegisterClass('Create()', @TList.Create, TList) do
  begin
    EnumeratorClass := TListEnumerator;
  end;

4.5 Registering Delphi functions

Functions can be registered for global usage (in any script) or for Scripter instance.

To register global function use HtScriptGlobal instance for registration.

To register common Delphi function pass function declaration and pointer to function:

Example:

  HtScriptGlobal.RegisterFunc('WeekOf(AValue: TDateTime): Word', @WeekOf);

Important note: functions should use "Register" calling convention.

Registering class function (non-static):

  HtScriptGlobal.RegisterFunc('Error(Msg: string; Data: integer)',
@TList.Error, nil, TList);

Registering object function (method):

  MyScript.RegisterFunc('Sample()', @MyObject.Sample, MyObject);



HTML Scripter20

© 2016 http://delphihtmlcomponents.com

Object function call looks in script code like normal function call:

  Sample();

but it will execute TMyObject.Sample() method of MyObject object instance.

Parameters default values

functions can have parameters with default values.

Example:

 HtScriptGlobal.RegisterFunc('MyFunc(s: string; Index: integer = 1)', @MyFunc);

4.6 "Set of" parameters

Function parameter with "set of.." type should be registered as "set". 

Example:

  HtScriptGlobal.RegisterFunc('MessageDlg(Msg: string; DlgType: integer; 
    Buttons: Set; HelpCtx: integer): Integer', @MessageDlg);

Calling in script:

  MessageDlg('Test', mtWarning,  [mbYes, mbNo, mbCancel], 0);

4.7 Array parameters

Array parameters are supported with standard syntax:

function([a1, a2, a3])

4.8 Registering DLL functions

Example of DLL function declaration:

function MessageBox(Handle: integer; Text, Caption: pchar; uType: integer): Integer; 
  external 'user32.dll' name 'MessageBoxW';

4.9 Magic functions

Magic function is a special function used in following cases

· number of parameters can vary 

· Parameter types are not known

· parameter cannot be passed in a standard way (for example - array)



Using Delphi classes and functions 21

© 2016 http://delphihtmlcomponents.com

· function needs Scripter instance to work.

· function has var parameters (for example Insert or Delete)

Magic function has following declaration:

function MagicFunction(const Sender: TScriptParser; var Params: TScriptStack; 
  StackTop, ParamCount: integer): Variant;

Sender is Scripter instance in which function is called.

Params is pointer to current runtime stack (array of TExVariable)

StackTop is index of top stack variable

ParamCount - number of parameters in call.

Example of magic function implementation:

function MagicInc(const Sender: THtScriptParser; var Params: TScriptStack; 
  StackTop, ParamCount: integer): Variant;
begin
  if ParamCount = 1 then
  begin
    if Params[StackTop].IsTemp then
      Sender.Tokenizer.Error(sVarRequiredforInc);
    Result := Params[StackTop].Value + 1;
    Params[StackTop].Value := Result;
  end else begin
    if Params[StackTop - 1].IsTemp then
      Sender.Tokenizer.Error(sVarRequiredforInc);
    Result := Params[StackTop - 1].Value + Params[StackTop].Value;
    Params[StackTop - 1].Value := Result;
  end;
end;

Registering magic function:

  HtScriptGlobal.RegisterMagicFunc('Inc', MagicInc);

Getting function name.

When magic function is registered with different names, current (called) function name can

be obtained via call stack:

 Name := TScriptFunc(Sender.DebugStack[Sender.DebugStack.Count - 1]).Name

4.10 Registering constants

Constants can be registered for global usage (in any script) or for Scripter instance.

To register global constant use HtScriptGlobal instance for registration.



HTML Scripter22

© 2016 http://delphihtmlcomponents.com

Example:

  HtScriptGlobal.RegisterConst('MaxInt', MaxInt);

4.11 Registering enumerations

To register enumeration type use TScriptParser.RegisterEnum method. 

Example:

  HtScriptGlobal.RegisterEnum(TypeInfo(TMsgDlgType));

Every element of enumeration is registered as constant. Maximum enumeration size is 32

for 32-bit target.

4.12 Creating and destroying objects

Objects created in script using constructors, for example

L := TStringList.Create();

will be destroyed automatically with scripter instance. Also you can destroy it manually via

Free() call:

L.Free();

After calling the destructor, object variable is set to null.

If an object created in script should be available after script is destroyed, release it using

ReleaseObject(O: TObject): TObject

function.

If you create an object in Delphi code (for using in script) and want this object to be added

into auto-free list use

Scripter.CreateObject(MyObject);

method.

Also you can set AutoFreeResult flag when registering a function:

  HtScriptGlobal.RegisterFunc('CreateSpecialList: TObject', 
   @CreateSpecialList).AutoFreeResult := true;

so all objects created via this function will be destroyed automatically.



Using Delphi classes and functions 23

© 2016 http://delphihtmlcomponents.com

Creating and destroying Components and Controls.

Since TComponent has Owner/Components mechanism for destroying, there is special

soAutoFreeComponents flag in Script.Options.

When set to false (by default) all objects of TComponent type created by constructor and

having Owner will not be destroyed by script.

4.13 Using script functions as Delphi event handler

Script functions can be used as Delphi components event handler. Currently library supports

only events of following types:

 TNotifyEvent 

 TCloseQuery

 TMouseDown

 TMouseMove

 TMouseWheel

To use script function as event handler simply assign a function to event property in a script

code:

procedure TestEvent(Sender: TObject);
begin
  ShowMessage(Sender.Name);
end;

Form.OnDblClick := @TestEvent;

Setting event handler from Delphi code

To set script function as event handler use TScriptFunc.AsNotifyEvent property.

Example:

 Form1.OnDblClick := Script.CreateAnonymousFunction('MessageDlg(''Test'', 
  mtWarning, [mbYes, mbNo, mbCancel], 0)').AsNotifyEvent;

Using existing script function:

 Form1.OnDblClick := Script.FindFunction('MyEventHandler').AsNotifyEvent;

4.14 Using script functions for callback

Script functions can be used as callback functions in Delphi Code.

For example, there is a class containing list of objects, and we want to sort it from script

with custom compare procedure.



HTML Scripter24

© 2016 http://delphihtmlcomponents.com

In Delphi code we declare compare procedure:

function TMyList.ScriptCompare(Func: TScriptFunc;
  const E1, E2: TListElement): integer;
begin
    Result := Func.Owner.RunFunction(Func, [Object2Variant(E1), Object2Variant(E2)])
end;

and Sort procedure

procedure TMyList.SortElements(Compare: TScriptFunc; Asc: boolean);
begin
  ...
end;

Sort procedure is called from script code:

 MyList.SortElements(
   function(E1, E2: TObject); 
   begin 
    ...
   end, 
  true);

4.15 Changing or disabling standard functions and classes set

Sometimes it is necessary to reduce set of standard functions/classes or replace it with

custom function set.

To use custom functions/classes set instead of standard, create a THtScriptGlobal class

descendant.

THtScriptGlobal contains several method for functions and classes registration accordingly

to Delphi units:

  THtScriptGlobal = class(THtScriptParser)
  protected

    // TObject.class
    fTObject: TScriptClass;

    // TObject.Free method
    fFreeMethod: TScriptFunc;
    StringHelper, IntegerHelper, SingleHelper, DoubleHelper: pointer;
    procedure RegisterInternals; virtual;
    procedure RegisterOrdinalHelpers; virtual;
    procedure RegisterMagicFunctions; virtual;
    procedure RegisterHtFunctions; virtual;
    procedure RegisterMathFunctions; virtual;
    procedure RegisterSystemFunctions; virtual;
    procedure RegisterSysUtilsFunctions; virtual;



Using Delphi classes and functions 25

© 2016 http://delphihtmlcomponents.com

    procedure RegisterClassesFunctions; virtual;
    procedure RegisterDateUtilsFunctions; virtual;
  public
    procedure RegisterAll; virtual;
  end;

By overriding RegisterAll method you can control what functions/classes will be

registered. 

Default RegisterAll code:

  fScriptGlobal := Self;
  RegisterInternals;
  RegisterOrdinalHelpers;
  RegisterMagicFunctions;
  RegisterSystemFunctions;
  RegisterSysUtilsFunctions;
  RegisterClassesFunctions;
  RegisterMathFunctions;
  RegisterDateUtilsFunctions;
  RegisterHtFunctions;

functions/classes registered by RegisterInternals are required, so this method should be called by any THtScriptGlobal descendants.

RegisterOrdinalHelpers is optional, like other methods, but is necessary for ordinal type

helpers to work.

To use new THtScriptGlobal descendant class, create an object instance of this class and

set ScriptParser.ScriptGlobal property to this instance.



HTML Scripter26

© 2016 http://delphihtmlcomponents.com

5 Expressions

TScriptExpression class is designed for evaluating expressions of any type, including

function calling. This class can be used separately from TScriptParser class to evaluate

expression and obtain result without creating ScriptParser instance.

5.1 Expression evaluation

For expressions without parameters simply call class function TScriptExpression.Evaluate. 

Example:

 t := TScriptExpression.Evaluate('Now() + 1');

For expression that contain variables, TScriptExpression instance should be created:

E := TScriptExpression.CreateandParse('s + IntToStr(t)');
E['t'] := 1;
E['s] := 'test';
a := E.Calc;

5.2 Passing parameters

Use TScriptExpression.Variables property to set expression variable value.

Variables object can be accessed via Expression.Parser.Vars property.

5.3 Using custom variables getter/setter

In some cases it is useful to have custom getter and setter for expression variables.  For

example, expression is used to calculate field value in Dataset, and all variables should be

mapped to Dataset fields:

procedure GetDatasetVar(const V: TExVariable);
var F: TField;
begin
  F := Dataset.FindField(V.Name);
  if Assigned(F) then 
    V.fValue := F.AsVariant
end;

procedure SetDatasetVar(const V: TExVariable);
var F: TField;
begin
  F := Dataset.FindField(V.Name);
  if Assigned(F) then 
    F.Value := V.fValue;



Expressions 27

© 2016 http://delphihtmlcomponents.com

end;
    
E := TScriptExpression.CreateandParse('MyField1:=MyField2+MyField3');
E.OnGetVar := GetDatasetVar;
E.OnSetVar := SetDatasetVar;
E.Calc;

5.4 Evaluating expression inside script

Similarly to javascript eval function, library supports runtime expression evaluation.

Example:

t := 100;
k := 200;
Result := eval('t+k');



HTML Scripter28

© 2016 http://delphihtmlcomponents.com

6 Executing script

6.1 Executing script

To execute script main block call TScriptParser.Run.

Example: 

 uses htscriptgui;

  SP := THtScriptParser.Create('ShowMessage(''test'');');
  SP.Run;

6.2 Accesing global variables

To get or set value of global script variable use TScriptParser.Variables (or

 TScriptParser.Objects for objects) property.

Example: 

t := Script.Variables['myvar'];
Script.Variables['myvar'] := 100;

To check is variable already registered and get variable object use TScriptParser.Vars

property.

Is variable registered:

if Script.Vars.GetVariable('MyVar') then ...

Enumerate all variables:

for i := Script.Vars.Count - 1 do
  List.Add(Script.Vars[i].Name);

6.3 Calling script function

Any script function can be called from Delphi code.
Example:

t := Script.RunFunction('MyFunc', [1, 'test']);

For faster calling you can get reference to a function and call it via reference:

var SF: TScriptFunc;
begin



Executing script 29

© 2016 http://delphihtmlcomponents.com

  SF := Script.FindFunction('MyFunc');
  if Assigned(SF) then
    t := Script.RunFunction(SF, [1, 'test'])
  else 
   ShowMessage('Function not found');
end;

6.4 Calling script function with var (out) parameters

To call script function with var or out parameters use RunVarFunction method.

Example:

var SP: THtScriptParser; 
    PA: array of variant;
begin
  SP := THtScriptParser.Create('function x(var a: integer): string; begin a:=a+100; Result:=''yes''; end;');
  SP.Parse;
  SetLength(PA, 1);
  PA[0] := 100;
  SP.RunVarFunction('x', PA);
  ShowMessage(PA[0]);

For faster calling you can get reference to function and call it via reference:

  SF := Script.FindFunction('x');
  if Assigned(SF) then
    t := Script.RunVarFunction(SF, PA)

6.5 Executing code block

It is possible to execute additional script (code block) in context of current script without

changing and recompiling original script.

At first step the script is converted into anonymous function and then executed.

Example:

var SF: TScriptFunc;
begin
  SF := Script.CreateAnonymousFunction('MyGlobalVar := MyScriptFunc(100, ''test'')');
  Script.RunFunction(SF, [])
end;

Code block can contain function with parameters.
Example:

var SF: TScriptFunc;
begin



HTML Scripter30

© 2016 http://delphihtmlcomponents.com

  SF := Script.CreateAnonymousFunction('function(p: integer; begin MyGlobalVar := MyScriptFunc(p, ''test'') end;');
  Script.RunFunction(SF, [100]);
end;

6.6 Predefined variables

Following global variables are defined by script engine:

§ Scripter: THtScriptParser - ScriptParser instance

§ Console: THtConsole - debug console

Custom global variables can be defined using HtScriptGlobal class, f.e.

HtScriptGlobal.Objects['application'] := Application;
HtScriptGlobal.Variables['appname'] := 'My Application';

6.7 Executing script from script

Script can create and run another scripter instance.

Example:

  P := THtScriptParser.Create('Result:=x+100;');

  P.Variables['x']:=100;

  P.Run();

  ShowMessage(P.Variables['Result']);

6.8 Units/Uses

Script can be divided into separate units. To use external units in script create

THtScriptParser.OnGetUnit event handler.

Example:

uses htutils;

function TForm1.OnGetUnit(Sender: THtScriptParser; const UnitName: string;
  var UnitText: string): boolean;
begin
  Result := false;
 if FileExists(ScriptsPath + UnitName + '.pas') then
  begin
    UnitText := FiletoStr(ScriptsPath + UnitName + '.pas');
    Result := true
  end;
end;

To use this event handler for all Scripter instances assign it to HtScriptGlobal.OnGetUnit.



Executing script 31

© 2016 http://delphihtmlcomponents.com

6.9 Error address and callstack

When exception is raised during script execution, call stack and source line are saved into

Parser.ExceptionStack and ExceptionLine properties.

Exceptions raised by scripter engine itself are of EHtScriptException type and contains the

following fields:

·     Sender: THtScriptParser - Scripter 

·     SourcePos: integer - absolute position in source code

·     Line: integer  - line in source code

·     ScriptUnit: string - name of unit (empty for main program).



HTML Scripter32

© 2016 http://delphihtmlcomponents.com

7 Debugging

7.1 ScriptDebugger class

For debugging a script it is necessary to implement a THtScriptDebugger abstract class.

It has following methods:

  THtScriptDebugger = class
  public

    /// Executed before script run
    procedure OnRun(Sender: THtScriptParser); virtual;

    /// Executed after script run
    procedure OnStop(Sender: THtScriptParser); virtual;

    /// Executed when script is paused
    procedure OnPause(Sender: THtScriptParser); virtual;

    /// Executed when script continue running
    procedure OnResume(Sender: THtScriptParser); virtual;

    /// Used in Paused mode to process application messages. Simply call Application.ProcessMessages in this procedure.
    procedure ProcessMessages(Sender: THtScriptParser); virtual;

    /// Triggered by Console.Log method in script
    procedure OnConsoleLog(MessageType: THtConsoleMessageType; const s: string); virtual;
  end;

After implementing a class set HtScriptDebuggerGlobal global variable.

7.2 Conrolling script execution

Following methods can be used to control script execution:

    /// Execute scipt to next line without tracing into functions
    procedure StepOver;

    /// Execute scipt to next line with tracing into functions
    procedure TraceInto;

    /// Stop script execution on ALine line.
    procedure RuntoCursor(ALine: integer);

    /// Stop script execution on ALine line.
    procedure RunUntilReturn;

    /// Continue script execution if script was paused.
    procedure Continue;



Debugging 33

© 2016 http://delphihtmlcomponents.com

    /// Break execution
    procedure Halt;

7.3 Getting variables

To get variable value in current context (taking into account current function stack), for

example, to display variable value in debug watch window, use 

    function GetDebugVariable(const Name: string): TExVariable;

7.4 Console and logging

Console object (similarly to Javascript console https://developer.mozilla.org/en/docs/Web/

API/Console) is intended for logging and profiling purposes.

Following Console object methods are available:

Log(Message: string)  - output message to console window

Info(Message: string)  - output info message to console window

Warn(Message: string)  - output warning message to console window

Error(Message: string)  - output error message to console window

Assert(Condition: boolean; Message: string) - check condition and output message into

console window (also exception is raised).

7.5 Profiling

Script execution can be profiled using Console Time and TimeEnd methods.

Call Time before profiled code and TimeEnd after, with the same text key.

Example:

Console.Time('MyExecution time is');
MyFunction();
Console.TimeEnd('MyExecution time is');

Result will be passed to the script debugger object via OnConsoleLog method.

7.6 Breakpoints

Use following methods to manage script breakpoints:

  procedure AddBreakpoint(ALine: integer; APassCount : integer = 0; const ACondition: string = '');
  procedure RemoveBreakpoint(ALine: integer);
  procedure ToggleBreakpoint(ALine: integer);
  function HasBreakpointAt(ALine: integer): boolean;

https://developer.mozilla.org/en/docs/Web/API/Console
https://developer.mozilla.org/en/docs/Web/API/Console


HTML Scripter34

© 2016 http://delphihtmlcomponents.com

7.7 Expression evaluation

To evaluate exppression in a current context, use Evaluate function.

Example: 

s := Script.Evaluate('inttostr(a)');



Using script in HTML document 35

© 2016 http://delphihtmlcomponents.com

8 Using script in HTML document

8.1 Introduction

To use scripting library in HTML documents add htdefscriptadapter unit to uses list.

Scripts are defined in HTML document similarly to standard Javascript scripts, but with type

attribute set to passcript or text/passcript.

Example:

<script type="passcript">
 procedure Test();
 begin
  document.getElementbyId('myid').innerHTML := 'test';
 end;
</script>

Note, that <script> tag with type set to passcript is necessary event if its content is empty,

otherwise script adapter will not process elements and document events. This is done to

prevent attempts of executing pascal script on normal HTML documents containing

Javascript in elements events.

Predefined variables
Following variables are defined when script in running inside an HTML document:

§ document: THtDocument - current document

§ window : TControl - control that owns document (for example THtPanel)

§ this: TElement - current element

§ event: THtMouseEvent - processed event

§ dragged: TElement - dragged element (in drag events)

§ form: TForm - current form (if script is running inside HTML control placed on a form)

Custom variables
Any object variable can be registered in script adapter for use in script:

    HtPanel.Doc.ScriptAdapter.RegisterObject(const Name: string; Value: TObject); 

8.2 JQuery support

Subset of JQuery functionality is supported via $() function when script is executed inside

HTML Document.

Syntax:

$(Selector, [Context]).Operation



HTML Scripter36

© 2016 http://delphihtmlcomponents.com

Selector is any valid CSS selector, for example

$('#id') - elements with id="id".
$('.myclass') - elements having CSS class myclass.
$('div') - all div elemets.

Context is optional context element. If context is passed, JQuery will start searching from

this element.

Result is list of found elements. Operation is executed on each element in the list. 

Some of operations returns element list to allow chaining.

Following operations are available:

property Attr[Name] 

 Get or set elements attribute value. When list contains several elements result is list

of attribute values separated by comma.

property HTML: string 

 Get (for first element) or set inner HTML.

property CSS[name: string] 
 Add CSS value.

function Each(Proc: procedure(Element): THtNodeList 

Execute procedure Proc on each element.

function AddClass(ClassName: string): THtNodeList 

Add CSS class

function RemoveClass(ClassName: string): THtNodeList 

Remove CSS class

function ToggleClass(ClassName: string): THtNodeList 

Toggle CSS class

function On(EventName: string; Code: string): THtNodeList 

Set event handler for event EventName

function First: THtNodeList 
return list containing first element only

function Last: THtNodeList 
return list containing last element only

function Parent: THtNodeList  
return list containing parent elements of all elements

function Children: THtNodeList;



Using script in HTML document 37

© 2016 http://delphihtmlcomponents.com

return list containing chilren of all elements

procedure Sort(Compare: function(E1, E2: TElement): integer, Asc: boolean) 

 sort list using Compare function

Example

Make rows of table #table selectable (user can click on row to select or deselect it)

$('#table tbody tr').On('click', 'this.ToggleClass(''selected'')'); 

8.3 Events

Supported element events:
onmousemove - mouse is moved over an element

onclick - element is clicked

ondblclick - element is double-clicked

onmouseover - mouse enters an element

onmouseout - mouse leaves an element

onmousedown - left button pressed

onmouseup - left button released

onchange - for input elements

onblur - element lose focus (for input element)

onscroll - element was scrolled

onresize - element size is changing

onresizeend - element size was changed

Events fired on the draggable target (the source element): 
ondragstart - occurs when the user starts to drag an element

ondrag - occurs when an element is being dragged

ondragend - occurs when the user has finished dragging the element

Events fired on the drop target: 
ondragenter - mouse enters an element while dragging

ondragleave - mouse leaves and element while dragging

ondrop - other element is dropped on element

Example
Set div semitransparent when other element is dragged over it.



HTML Scripter38

© 2016 http://delphihtmlcomponents.com

$('mydiv').on('dragenter', 'if Event.Target.tag=''div'' then Event.Target.css(''opacity: 0.5'');');
$('mydiv').on('dragleave', 'if Event.Target.tag=''div'' then Event.Target.css(''opacity: 1'');');

8.4 AJAX

* HTML Report Library is required

Script inside HTML page can execute HTML Report using RunHtReport function.

function RunHTReport(Report, ContexXML: string): string;

Report parameter contains report text and ContextXML can be used for passing additional

parameters to report.

Example:

  s:='<report-objects><object name="cust" '+
   'sql="select * from customer where upper(company) like ''%%{{SEARCH}}%%'' order by company"/>'+
    '</report-objects>'+
  '{{#cust.ROWDATA}}'+
  '<p><i class="fa fa-user"/> <a href="#">{{COMPANY}}</a></p>'+
  '{{/cust.ROWDATA}}';

  Res := RunHtReport(s, '<CONTEXT SEARCH="ab"/>'); 

8.5 Interactive hints

When script is running inside HtPanel, it is possible to show interactive hint window with

HTML document.

Example:

<script type="passcript">

procedure showhint;
begin
  document.control.ShowFloatHint(this, '<h3>This is hint</h3>', true);
end;

</script>

<a onclick="showhint()">Click me</a>

function ShowFloatHint(Element: TElement; Hint: string; Animated: boolean);

Element:  hint element - hint will be hidden when mouse leaves this element. 

Hint: hint text.



Using script in HTML document 39

© 2016 http://delphihtmlcomponents.com

Animated - animated show.

8.6 Usage examples

8.6.1 Make table sortable

<script type="passcript">
$('#tableid th').on('click', 'this.upto(''table'').SortColumn:=this.Col;document.repaint();');
</script>

<table id="tableid">
 <tr><th>header</th></tr>
 <tr><td>3</td></tr>
 <tr><td>2</td></tr>
 <tr><td>1</td></tr>
</table>

8.6.2 Highlight list items starting with 'A'

procedure TestA(E: TElement);
begin
  if AnsiStartsWith(E.Attr['name'], 'A') then 
    E.css('font-weight: bold;');
end;

procedure Highlight();
begin
  $('#ul li').Each(@TestA);
end;

8.6.3 Convert nested list into expandable tree

<style>
li>ul {display: none}
li.show>ul {display: block}
</style>

<script type="passcript">

 $('li a').on('click', 'this.parent.toggleClass(''show'')');

</script>

<ul>
 <li><a href="#">Item1</a>
  <ul>
    <li>Subitem1</li>



HTML Scripter40

© 2016 http://delphihtmlcomponents.com

    <li><a href="#">Subitem2</a>
      <ul>
        <li>Sub-Sub-Item1</li>
      </ul> 
    </li>
    <li>Subitem3</li>
  </ul>
 </li>
</ul>

8.6.4 Directory tree with background loading

*HTML Report Library is required.

<style>
 body {font-family: Verdana; font-size: 14px}
 ul {list-style-type: none; transition: height 0.3s; 
  overflow: hidden}
 a {text-decoration: none}
 a:hover {text-decoration: underline}
 li>ul {height: 0px}
 li[type="DIRECTORY"]>img {display: none}
 li.show>ul {height: auto}
 li {padding: 3px 3px}
 .fa {color: green}
</style>

<script type="passcript">

procedure ShowFiles();
begin

 { Disable onclick event for parent li nodes}
 if Assigned(Event) then
   event.StopPropagation();

 { file or processed directory }
 if this.hasclass('processed') or 
  (this.Attr['type'] <> 'DIRECTORY') then 
 begin

   { open / close }
   if this.Attr['type'] = 'DIRECTORY' then 
     this.toggleClass('show'); 

   { update folder icons }
   $('li[type="DIRECTORY"]>i').removeClass('fa-folder-open-o').
     addClass('fa').addClass('fa-folder-o');  
   $('li.show>i').removeClass('fa-folder-o').
     addClass('fa-folder-open-o');  
   document.Refresh();
   exit;
 end;
 { Report code }
 s := '<report-objects><object name="files" type="directory" '+



Using script in HTML document 41

© 2016 http://delphihtmlcomponents.com

       ' sql="{{DIR}}\*.*"/></report-objects>'+
  '<ul>'+
  '{{#files.ROWDATA}}'+
  '<li dirname="{{PATH}}{{NAME}}" type="{{FILETYPE}}">'+
  '<i/> <img src="_shellsmallicons/{{EXT}}"> <a href="#">{{NAME}}</a></li>'+
  '{{/files.ROWDATA}}'+
  '</ul>';

  Async(
   function(E: TElement): string; 
   begin 
    Result := RunHtReport(s, '<CONTEXT DIR="'+E.attr['dirname']+'"/>'); 
   end, 
   procedure(E: TElement; s: string); 
   begin 
     E.innerhtml := E.innerhtml + s;  
     $('li').on('click', 'ShowFiles()');  
     E.addClass('processed'); 
     document.Refresh();
     $('li[type="DIRECTORY"]>i').addClass('fa').
       addClass('fa-folder-o');  
     E.addClass('show'); 
     $('li.show>i').removeClass('fa-folder-o').
        addClass('fa-folder-open-o');  

     { we need second Refresh for open/close animation. 

       First refresh calculate zero <ul> height, second 

      (after setting .show class) calculates 'auto' height and starts transition }
     document.Refresh();
   end, 
   [this]
 );
end;

{ set onclick handler for list items }
$('li').on('click', 'ShowFiles()');

this := document.getElementbyId('root');
ShowFiles();

</script>

<ul>
 <li id ="root" dirname="c:" type="DIRECTORY"><i/> <a>Root</a></li>
</ul>

8.6.5 Incremental search

*HTML Report Library is required.

When edit is changed, SetTimeout function adds ShowCustomers to queue with 500ms

delay. Next change of the edit, reset queued function and starts new.

ShowCustomers executes report via RunHtReport and passes result to #cust div element.



HTML Scripter42

© 2016 http://delphihtmlcomponents.com

<style>
 a {text-decoration: none}
 a:hover {text-decoration: underline}
</style>

<script type="passcript">

procedure showcustomers();
begin

 { Report code }
 s:='<report-objects><object name="cust" '+
   'sql="select * from customer where upper(company) like ''%%{{SEARCH}}%%'' order by company"/>'+
    '</report-objects>'+
  '{{#cust.ROWDATA}}'+
  '<p><i class="fa fa-user"/> <a href="#">{{COMPANY}}</a></p>'+
  '{{/cust.ROWDATA}}';

  Async(
   function(value: string): string; 
   begin 
    Result := RunHtReport(s, '<CONTEXT SEARCH="' + AnsiUpperCase(value) + '"/>'); 
   end, 
   procedure(value, s: string); 
   begin 
    $('#cust').html := s;
    document.refresh();
  end,
  this.value
 );
end;

</script>

<input type="text" onchange="if Assigned(custsearch) then ClearInterval(custsearch);
   custsearch:=SetTimeout(@showcustomers, 300);">
<div id="cust"></div>

8.6.6 Infinite page

New portion is loaded when page is scrolled to bottom.

<style>
 body {font-family: Verdana; font-size: 10px}
 .fa {color: orange}
 .item {padding: 5px 5px}
</style>

<script type="passcript">

procedure showcustomers();
begin

 { Report code }
 s := '<report-objects><object name="cust" sql="select * from customer"/></report-objects>'+



Using script in HTML document 43

© 2016 http://delphihtmlcomponents.com

  '{{#cust.ROWDATA}}'+
  '<div class="item"><i class="fa fa-user"/> {{COMPANY}}</div>'+
  '{{/cust.ROWDATA}}<div id="cust"></div>';
  s1 := RunHtReport(s, '<CONTEXT/>');
  $('#cust').html := s1;

  { clear id for old placeholder }
  $('#cust').first.Attr['id'] := '';
  document.refresh();
end;

procedure OnScroll();
begin
  if document.innerheight - document.scrolltop - 50 < window.innerheight then
    showcustomers();
end;

document.AddEventListener('scroll', @onscroll);

</script>

<a onclick="showcustomers()">Show Customers</a>
<div id="cust"></div>

8.6.7 Calling script function from Delphi

Res := (HtPanel1.Doc.ScriptAdapter as

THtDefScriptAdapter).SP.RunFunctionIfExists('MyScriptFunction', [Param1]);



HTML Scripter44

© 2016 http://delphihtmlcomponents.com

9 Standard functions

Magic functions

  Async(Proc, After: procedure);
  Decode(value1, result1, [valueN, resultN], valueElse: variant): variant;
  ExceptionMessage() : string;
  Iif(condition: boolean; IfTrue, IfFalse: variant): variant;
  IfThen(condition: boolean; IfTrue, IfFalse: variant): variant; 
  InRange(Value: variant; Min, Max: variant): boolean;
  ReleaseObject(A: TObject): TObject; 
  StrIn(s: string; v1, v2, [..vN] : string): boolean;
  SetLength(Value: string or array; Length: integer);
  SetTimeout(Proc: procedure; Timeout: integer);  

  

System unit

  Assigned(var v): boolean;
  Abs(X: double): double
  ArcTan(X: Extended): Extended
  Cos(X: Extended): Extended
  Char(c: integer): char
  Copy(s: string; Index, Count: integer): string
  Dec(var value: integer; decrement: integer = 1);
  Delete(var s: string; Index, count: integer);
  Exp(X: Extended): Extended
  Frac(X: Extended): Extended
  High(A: array): integer;
  Inc(var value: integer; increment: integer = 1);
  Insert(Substring: string; var Target: string; Index: integer);
  Length(s: string): integer
  Ln(X: Extended): Extended
  MkDir(s: string)
  Odd(X: integer): boolean
  Pred(x: integer): integer
  ParamCount()
  ParamStr(Index: integer): string
  Pos(const Substr, Str: string): integer
  PosEx(const Substr, Str: string; Offset: integer): integer
  Randomize()
  Random(ARange: integer): integer', @_Random);
  RmDir(s: string)
  Round(X: double): integer
  Sqr(X: double): double
  Sqrt(X: Extended): Extended;', @Sqrt);
  Sin(X: Extended): Extended
  Succ(x: integer): integer
  Swap(x: integer): integer



Standard functions 45

© 2016 http://delphihtmlcomponents.com

  Sleep(x: integer)
  Tangent(X: Extended): Extended
  Trunc(X: double): integer
  UTF8Encode(s: string): ansistring

Windows unit

GetTickCount(): integer

SysUtils unit

  Abort()
  AnsiLowerCase(s: string): string
  AnsiSameStr(s1, s2: string): boolean
  AnsiSameText(s1, s2: string): boolean
  AnsiUpperCase(s: string): string
  AnsiQuotedStr(s: string): string
  ChangeFileExt(FileName, Extension: string): string
  CompareText(s1, s2: string): integer
  CurrentYear: integer
  DirectoryExists(Path: string): boolean
  Date(): TDateTime
  DayOfWeek(Date: TDateTime): integer
  DeleteFile(FileName: string): boolean
  EncodeDate(Year, Month, Day: integer): TDateTime
  EncodeTime(Hour, Min, Sec, s100: integer): TDateTime
  ExtractFilePath(FileName: string): string
  ExtractFileName(FileName: string): string
  ExtractFileExt(FileName: string): string
  FileExists(FileName: string): boolean
  FileCreate(FileName: string): integer
  FileOpen(FileName: string; Mode: integer): integer
  FileClose(Handle: integer)
  FileWrite(Handle, Buffer, Count: integer): integer
  ForceDirectories(Dir: string)
  Format(s: string; Param: array of const): string;
  FormatDateTime(Format: string; Value: TDateTime): string
  FormatFloat(Format: string; Value: extended): string
  FloatToStr(Value: extended): string
  FloatToStrF(Value: Extended; Format: integer; Precision, Digits: Integer): string
  IncMonth(Date: TDateTime; NumberOfMonths: Integer): TDateTime
  IntToStr(n: integer): string
  IntToStr64(n: cardinal): string
  IntToHex(Value: Integer; Digits: Integer): string;
  LowerCase(s: string): string
  Now(): TDateTime
  QuotedStr(s: string): string
  RenameFile(OldName, NewName: string): Boolean
  ReplaceStr(S, OldPattern, NewPattern: string): string
  StringReplace(S, OldPattern, NewPattern: string): string
  StrToInt(s: string): integer



HTML Scripter46

© 2016 http://delphihtmlcomponents.com

  StrToIntDef(S: string; Default: Integer): Integer
  StrToFloat(S: string): Extended;
  StrToFloatDef(S: string; Default: Extended): Extended;
  StrToBool(s: string): boolean
  StrToTime(s: string): TDateTime
  StrToDate(s: string): TDateTime
  StrToDateTime(s: string): TDateTime
  Trim(s: string): string
  TrimLeft(s: string): string
  TrimRight(s: string): string
  TimetoStr(t: TDateTime): string
  SetCurrentDir(Dir: string): Boolean
  SameStr(s1, s2: string): boolean
  SameText(s1, s2: string): boolean
  UpperCase(s: string): string 

DateUtils unit

  YearOf(AValue: TDateTime): Word
  MonthOf(AValue: TDateTime): Word
  WeekOf(AValue: TDateTime): Word
  DayOf(AValue: TDateTime): Word
  HourOf(AValue: TDateTime): Word
  MinuteOf(AValue: TDateTime): Word
  SecondOf(AValue: TDateTime): Word
  MillisecondOf(AValue: TDateTime): Word;
  StartOfTheYear(const AValue: TDateTime): TDateTime
  EndOfTheYear(const AValue: TDateTime): TDateTime
  StartOfTheMonth(const AValue: TDateTime): TDateTime
  EndOfTheMonth(const AValue: TDateTime): TDateTime
  StartOfTheWeek(const AValue: TDateTime): TDateTime
  EndOfTheWeek(const AValue: TDateTime): TDateTime

Math unit

  Ceil(X: single): integer
  Floor(X: single): integer
  Power(Base, Exponent: Extended): Extended;
  Sign(AValue: double): integer;

HTML functions

  AnsiStartsWith(s, start: string): boolean
  AnsiEndsWith(s, start: string): boolean
  StartsWith(s, start: string): boolean
  EndsWith(s, start: string): boolean
  FindChar(c: char; s: string; Start: integer = 1): integer
  BlankString(s: string): boolean
  CalcStrCrc32(s: string): cardinal
  HTMLEncode(s: string; NewLength : integer = -1): string
  HTMLEncodeAttr(s: string; NewLength : integer = -1): string



Standard functions 47

© 2016 http://delphihtmlcomponents.com

  HTMLColortoHex(Color: cardinal): string
  HTMLColortoStr(Color: cardinal): string
  iStrToFloat(s: string): single
  ObjecttoXML(O: TObject; ClassProp: boolean = false; Node: THtXMLNode = nil; UpperCaseName: boolean = true): THtXMLNode
  StrToDateFmt(s: string; format : string =''dd.mm.yyyy hh:nn:ss''): TDateTime



HTML Scripter48

© 2016 http://delphihtmlcomponents.com

10 Standard constants

MaxInt
MaxWord
MaxCurrency
Pi



Standard classes 49

© 2016 http://delphihtmlcomponents.com

11 Standard classes

TObject

Exception

TStrings

TStringList

TList

TBits

TCollection

TComponent

THtXMLNode

THtInetClient

htscriptgui unit
TOpenDialog

TSaveDialog

TFileOpenDialog

TFileSaveDialog

TFindDialog

TForm

TButton

TLabel

TGroupBox

TMemo

TComboBox

TCheckBox

TRadioButton

TListBox

TShape

TImage

TTimer

TPanel

TSplitter

TLabeledEdit

TButtonedEdit


	Table of Contents
	1 Introduction
	2 Getting started
	3 Script Language
	3.1 Overview
	3.2 Script structure
	3.3 Expressions
	3.4 Comments
	3.5 Statements
	3.6 Variables
	3.7 Arrays
	3.8 Numbers
	3.9 Function declaration
	3.10 Anonymous functions
	3.11 Reference to function
	3.12 Ordinal types helpers
	3.13 Asynchronous functions

	4 Using Delphi classes and functions
	4.1 Registeging Delphi classes and methods
	4.2 Default properties
	4.3 Generic method handler
	4.4 Registering for-in enumerators
	4.5 Registering Delphi functions
	4.6 "Set of" parameters
	4.7 Array parameters
	4.8 Registering DLL functions
	4.9 Magic functions
	4.10 Registering constants
	4.11 Registering enumerations
	4.12 Creating and destroying objects
	4.13 Using script functions as Delphi event handler
	4.14 Using script functions for callback
	4.15 Changing or disabling standard functions and classes set

	5 Expressions
	5.1 Expression evaluation
	5.2 Passing parameters
	5.3 Using custom variables getter/setter
	5.4 Evaluating expression inside script

	6 Executing script
	6.1 Executing script
	6.2 Accesing global variables
	6.3 Calling script function
	6.4 Calling script function with var (out) parameters
	6.5 Executing code block
	6.6 Predefined variables
	6.7 Executing script from script
	6.8 Units/Uses
	6.9 Error address and callstack

	7 Debugging
	7.1 ScriptDebugger class
	7.2 Conrolling script execution
	7.3 Getting variables
	7.4 Console and logging
	7.5 Profiling
	7.6 Breakpoints
	7.7 Expression evaluation

	8 Using script in HTML document
	8.1 Introduction
	8.2 JQuery support
	8.3 Events
	8.4 AJAX
	8.5 Interactive hints
	8.6 Usage examples
	8.6.1 Make table sortable
	8.6.2 Highlight list items starting with 'A'
	8.6.3 Convert nested list into expandable tree
	8.6.4 Directory tree with background loading
	8.6.5 Incremental search
	8.6.6 Infinite page
	8.6.7 Calling script function from Delphi


	9 Standard functions
	10 Standard constants
	11 Standard classes

