
© 2023 delphihtmlcomponents.com

HTML Library

3Contents

3

© 2023 delphihtmlcomponents.com

Table of Contents

Foreword 0

Part I Units

 5

Part II Classes

 7

Part III Custom element classes

 9

Part IV Styles

 10

Part V Quirks mode

 11

Part VI Controls

 12

1 HtPanel ... 12

2 VirtualTrees .. 14

Part VII CSS properties and classes

 16

1 Listing element properties .. 17

Part VIII Unicode

 19

Part IX Images

 20

Part X Canvases

 23

Part XI Navigation

 24

Part XII JQuery and XPath

 25

Part XIII DOM

 26

Part XIV Events

 27

Part XV Scripts

 29

Part XVI HTML and Plain text

 30

1 Formatted HTML .. 30

2 Incorrect markup ... 30

Part XVII XML and JSON

 31

Part XVIII HTML encode

 32

HTML Library4

© 2023 delphihtmlcomponents.com

Part XIX Hyphenation

 33

Part XX Delphi controls

 34

Part XXI Fonts and FontAwesome

 35

Part XXII Hints

 36

Part XXIII Notifications

 37

Part XXIV Colors and themes

 38

Part XXV Highlighted text

 40

Part XXVI Document bounds

 41

Part XXVII Inputs and forms

 42

Part XXVIII Scale and DPI

 43

Part XXIX Selection

 44

Part XXX Resize and drag

 46

1 Sortable containers ... 46

Part XXXI Search and Table of Contents

 47

Part XXXII Printing

 48

Part XXXIII PDF export

 49

Part XXXIV SVG export

 51

Part XXXV SVG creation

 52

Part XXXVI Clipboard

 54

Index 0

Units 5

© 2023 delphihtmlcomponents.com

1 Units

Core units

htmlpars - parsing and base node classes - THtNode, THtmlNode

htmlcss - CSS styles, TStyledHTMLNode, TCSSStyleSheet, etc.

htcanvas - base canvas class.

htdictionary - dictionaries

hthints - HTML hints

htinet - HTTP client for loading images and styles via HTTP

htmlani - CSS animations

htpdf - direct PDF export (requires Office library).

htplatform - platform depending classes.

htresource - localization.

htscriptIndy - Indy classes registration for Scripter

htscriptparse - Scripter

httemplates - template engine

htTextRenderer - classes for plain text canvas

htutils - common functions

htxml - XML and JSON parsing.

Following units has two versions depending on framework - VCL or FMX:

VCL:

htmldraw - TElement and THtDocument classes.

httables - HTML tables support - TTableElement, TTableCell, TTableRow, etc.

htsvg - SVG support - TSVGElement, TSVGPathElement, etc.

htclasses - additional element classes - TFrameElement, TInputElement, TSelectElement, etc.

htdefscriptadapter - script adapter class

htfontawesome - FontAwesome registration for VCL

htmlcomp - UI components

htmlgraph - common graphics functions

htscriptgui - GUI functions registration for Scripter

FMX

fmx.fhtmldraw

fmx.fhttables

fmx.fhtsvg

fmx.fhtclasses

fmx.fhtdefscriptadapter

HTML Library6

© 2023 delphihtmlcomponents.com

fmx.htfontawesome

fmx.fhtmlcomp

fmx.fhtmlgraph

fmx.htscriptgui

VCL only units

htdirect2d - Direct2D API

htforms - HTML forms

htgif - GIF support for old Delphi

htmlcatbuttons - TCategoryButtons with HTML support

htmldbcomp - DBlabel and TemplatePanel

htchrometabs - ChromeTabs descendant

htmlsmarttabs - SmartTabs with HTML support

htmlvtree - VirtualTree with HTML support

htremotedebug - remote debugger for Scripter

htscriptdebug - sample debugger for Scripter

htsynpdf - PDF export using SynPDF

htvideo - Video element using libvlc

htzip - ZIP support for Delphi 5-2007.

Canvas classes units

htcanvasdx - Direct2D canvas

htcanvasgdi - GDI canvas

htcanvasgdip - GDI+ canvas

htcanvaslazarus - standard Lazarus canvas

htcanvasopengl - OpenGL canvas

htcanvasskia - Skia canvas

htcanvastex - plain text canvas

fmx.htcanvasFMX - standard FMX canvas

fmx.htcanvasAndroid - native Android canvas

fmx.htcanvasiOS - native iOS canvas

fmx.htcanvasOSX - native OS X canvas

fmx.hcanvasText - plain text canvas

fmx.OSXPDF - native PDF export for OSX

Classes 7

© 2023 delphihtmlcomponents.com

2 Classes

HTML node classes has the following hierarchy:

THtNode - base node class, htmlpars unit.

THtXMLNode - XML node, htxml unit

THtmlNode - base HTML node class, htmlpars unit

TStyledHTMLNode - node with CSS styles support (Style property), htmlcss unit

TElement - general DOM element class, htmldraw / fmx.fhtmldraw unit

THtDocument - HTML document, htmldraw / fmx.fhtmldraw unit

TTableElement - HTML table, httables / fmx.fhttables unit

TTableCell - HTML table cell, httables / fmx.fhttables unit

TTableRow HTML table row, httables / fmx.fhttables unit

TSVGElement - SVG element, htsvg / fmx.fhtsvg unit

TSVGBaseElement - base class for SVG elements, htsvg /

fmx.fhtsvg unit

TSVGPathElement

TSVGGElement

TSVGDefsElement

TSVGRectElement

TSVGLineElement

TSVGPolylineElement

TSVGEllipseElement

TSVGCircleElement

TSVGTextElement

TSVGImageElement

TSVGUseElement

TSVGForeignObject

TSVGClipPathElement

TImageElement - HTML image, htmldraw / fmx.fhtmldraw unit

TIframeElement - iframe element, htmldraw /

fmx.fhtmldraw unit

TTextElement - HTML text element, htmldraw / fmx.fhtmldraw

unit

TDetailsElement - HTML details element, htmldraw /

fmx.fhtmldraw unit

TBaseInputElement - basic HTML input element, htmldraw /

fmx.fhtmldraw unit

TInputElement - input element - edit, radio, checkbox.

htclasses / fmx.fhtclasses unit

TSelectElement - select element. htclasses /

fmx.fhtclasses unit

HTML Library8

© 2023 delphihtmlcomponents.com

TTextArea element - textarea element. htclasses /

fmx.fhtclasses unit

TControlElement -container for VCL/FMX controls, htmldraw /

fmx.fhtmldraw unit

TFieldSetElement - fieldset, htclasses / fmx.fhtclasses unit

THtLabelElement - label element, htclasses / fmx.fhtclasses unit

THtCommentElement - comment (!) element, htclasses /

fmx.fhtclasses unit

TFrameSetElement - frameset element, htclasses / fmx.fhtclasses

unit

TFrameElement - frame element, htclasses / fmx.fhtclasses unit

Custom element classes 9

© 2023 delphihtmlcomponents.com

3 Custom element classes

To register or override element class use HtRegisterElementClass from htmldraw unit

procedure HtRegisterElementClass(const Tag: string; const ElementClass: THtElementClass);

HTML Library10

© 2023 delphihtmlcomponents.com

4 Styles

There are several places where CSS styles can be defined

· inline element style = ".." attribute

· document <style> tags

· control Styles property (f.e. HtPanel.Styles)

· HtGlobal.Styles property

· HTML4Stylesheet

When calculating element style, stylesheets from above list are applied in reverse order.

1. Inline element style. F.e. . To check inline style use

Element.SelfStyleSheet property.

2. Properties set by HTML4 attributes. F.e. <image width="300"> will add width:300px; to

SelfStylesheet.

3. Properties set by HTML4 default stylesheet. F.e. tag will cause font-weight:bold added

to calculated style.

4. Properties inherited from parent elements. F.e. direction:rtl can be inherited from parent.

5. Properties calculated from document <style>..</style> section.

6. Properties calculated from Editor.Styles (or HtPanel.Styles)

To add global CSS rules use HtGlobal.Styles.Add.

To add new rules to document use Doc.Styles.Parse(NewCSS)

By default same stylesheets are cached and same styles are shared between documents.

To prevent this set THTDocument.SharedStyles to false.

Quirks mode 11

© 2023 delphihtmlcomponents.com

5 Quirks mode

Handling of some CSS properties depends on document header (see quirks mode

https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks_Mode_and_Standards_Mode)

THtDocument and THtPanel has QuirksModeSelector property which defines whan mode will

be choosen

qmAuto - depents on header

qmDocType - treat all documents as having DOCTYPE

qmQuirks - treat all documents as not having DOCTYPE

https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks_Mode_and_Standards_Mode

HTML Library12

© 2023 delphihtmlcomponents.com

6 Controls

Most of HTML enabled controls have two main properties: HTML for defining HTML content

and Styles for CSS styles.

VCL controls (htmlcomp unit)

THtHint - HTML enabled hint window

THtBalloonHint - HTML enabled balloon hint window

THtLabel - HTML enabled label

THtCheckBox - HTML enabled checkbox

THtRadioButton - HTML enabled radio

THtListbox - Listbox with HTML enabled items

THtButton - HTML enabled button

THtSpeedButton - HTML enabled speedbutton

THtPopupMenu - HTML enabled popup menu

THtComboList - HTML enabled combo

THtColorCombo - color picker combo

THtTabset - HTML enabled tabset

THtStatusBar - HTML enabled status bar

THtNotiyWindow - HTML enabled notification window

THtMetroPanel - Metro-like panel

THtFloatForm - floating form with HtPanel

THtVirtualTreeView - HTML enabled VirtualTreeView descendant

THtVirtualXMLTree - HTML enabled intercative VirtualTreeView descendant

THtChromeTabs - HTML enabled ChromeTabs

THtSmartTabs - HTML enabled rkSmartTabs

THtCatButtons - HTML enabled category buttons

6.1 HtPanel

THtPanel

Main HTML control, supports scrolling, zoom, gestures, lazy and delayed image loading, text

selection, autoheight.

Published Properties:

Active : boolean - enable or disable mouse event processing. Disable for faster

scrolling and resize.

AdaptiveZoom: boolean - switch between proportional zoom and browser-like (fit to widow)

mode.

AllowFocus : boolean - allow/disallow focus.

AllowScaling : boolean - allow zoom using Ctrl+Wheel.

AutoHeight : boolean - automatic height calculation.

Controls 13

© 2023 delphihtmlcomponents.com

BackgroundImageLoading: boolean - load images in separate thread.

ClearHTMLAftrerLoad: boolean - clear HTML property after document is loaded to reduce

memory consumption

CurrentFile : string - full name of file loaded to panel, used to expand path of images

referenced by document.

EnableSelection: boolean - enable/disable text selection

HorizontalScrollBar - horizontal scrollbar mode

HTML : TStrings - set HTML content

Images : TImageList - linked Image list. Images from this list can be referenced by index:

src="1"

LazyImageLoading: boolean - load image only when it is scrolled into view

HighlightTextColor - color of highlighted text

PreservePositionOnHTMLChange - do not reset scroll offsets when HTML is changed.

QuircksModeSelector - select how to handledocuments without DOCTYPE, see Quicks mode

section.

Scale : integer - zoom in percents

ScaleFromCenter: boolean - switch between scaling from left top and mouse cursor

ScaleMin : integer - minimum scale value

ScaleMax : integer - maximim scale value

Script : TStrings - additional pascal scripts

SelectHandleStyle - style of selection handles (on touch-enabled devices)

ShowHing - show hints in elements (title attribute)

Styles : TStrings - additional CSS styles

TouchScroll : boolean - enable scroll by pressing and moving mouse.

VerticalScrollBar - vertical scrollbar mode

WebLoading - enable loading images and styles from web.

Public properties:

Doc : THtDocument - HTML document.

Document : THtDocument - HTML document - same as Doc

CanvasClass - canvas class used for displaying document

ScriptAdapter - document script adapter (see Scripter manual)

Events

AfterControlCreated - called after creating Delphi control

AfterPaint - called after paint (after EndScene)

AfterTableColumnMoved - called after HTML table column was moved

OnGetParam - get parameter for templates in comments (THtTemplatePanel)

OnGetURL - custom handling of CSS stylesheets, font and image URLs.

OnGetImage - custom handling of image URLs

OnURLCLick - called when <a> element is clicked. Use Sender['href'] to get URL.

OnURLEnter - called when mouse enters <a> element. Use Sender['href'] to get URL.

HTML Library14

© 2023 delphihtmlcomponents.com

OnURLExit - called when mouse leaves <a> element. Use Sender['href'] to get URL.

OnElementEnter - called when mouse enter any element

OnElementExit - called when mouse leaves any element

OnMouseWheel - called on mouse wheel

OnAnimationEnd - called after animation is finished

OnElementDragEnd - called when element is dropped

OnElementResizeEnd - called when element is resized

OnElementClick - called when element is clicked

OnElementClickEx - same as OnElementClick but with additional parameters

OnAfterImageLoaded - called after image load (lazy or background mode)

OnImageLoadFailed - called if image load was failed

OnScrollBarPaint - paint event for vertical scrollbar

OnCreateControl - custom handling of Delphi controls creation

OnShowResizeHint - custom resize hint handling

OnScroll - called after scroll

Methods

Scroll(DX, DY) - scroll content

ScrollIntoView(Element) - scroll element into view

ScrollIntoCenter - scroll element into window center

ScrollIntoTop - scroll element to window top

ScrollRectIntoView - scroll document rect into view

ScrollCanvasRectIntoView - scroll canvas rectangle into view

CopySelectiontoClipboard - copy selected content to clipboard

CopytoClipboard - copy whole document to clipboard

LoadfromFile - load document from file

LoadfromURL - load document from URL

LoadfromString - load document from string

LoadfromResource - load document from resource

Print - print document

FindDialog - execute find dialog

ReplaceDialog - execute replace dialog

ShowFloatHint - show hint for element

HideFloatHint - hide hint

ScalefromPoint - scale document from point

SetTargetPosition - set target position for smooth scrolling

SetTargetScale - set target scale for smooth zoom

6.2 VirtualTrees

THtVirtualTree and THtVirtualXMLTree classes are TVirtualStringTree descendants with

HTML support.

They are located in a htmlvtree unit.

Controls 15

© 2023 delphihtmlcomponents.com

Please note that htmlvtree_* package is not installed automatically, you can install it manually

after installing VirtualTrees library from GetIt or other source.

HTML Library16

© 2023 delphihtmlcomponents.com

7 CSS properties and classes

Properties

Element CSS properties can be accessed via Element.Style property. For example

function BorderTopStyle: TLineStyle;
function BorderRightStyle: TLineStyle;
function BorderBottomStyle: TLineStyle;
function BorderLeftStyle: TLineStyle;
function BoxShadow: TElementShadow;
function TextShadow: TElementShadow;
function FlexDirection: TCSSFlexDirection;
function JustifyContent: TCSSJustifyContent;

Some properties are of TMeasure type, to get actual pixel value use its PIxels (integer) or

FPixels (float) property.

Also it has Value and MUnit (measurement unit) properties.

Properties cannot be changed directly, to change it use Element.AddCSS method. For example

Element.AddCSS('color: black');

AddCSS has two additional parameters

· UpdateStyleAttr - element style attribute will be updated

· Weight - custom CSS weight (priority)

To change porperty without affecting style attribute, it is better to use AddvirtualCSS method.

To clear CSS property value (revert to default) use ClearCSS method, or ClearCSSRecursive

(clear in element and all descendants).

Property can be changed for number of selected elements, use css[] property of JQuery or

XPath result. For example

Doc.JQuery('img.small').css['border'] := 'solid red 1px';

Inline element stylesheet can be accessed via SelfStylesheet property. Note that it contains

properties from both inline style and virtual style.

Virtual style contains properties calculated from element attributes and added from code using

AddVirtualCSS.

To change whole inline style use SelfStyle property, SetAttribute method or Attr['style']

property. Attr[] will only change attribute, but not affect stylesheet, SetAttribute and

SelfStyle will immediately apply new value to inline stylesheet.

CSS properties and classes 17

© 2023 delphihtmlcomponents.com

Classes

· StyleClass or ClassName or Attr['class'] - get current classes

· HasClass - check is element has class

· RemoveClass - remove class from element

· ToggleClass - add or remove class

When using JQuery or XPath following methods are available:

· HasClass - check is element has class

· RemoveClass - remove class from element

· ToggleClass - add or remove class

Example:

Doc.JQuery('div.row').addClass('selected');

7.1 Listing element properties

Example of getting all CSS properties for element

function TForm1.GetCurrentCSS(P: TElement): string;
var WL: TCSSWeightList;
 P: TElement;
 i: integer;
 s: string;
begin
 WL := TCSSWeightList.Create(16);
 Result := '';
 while Assigned(P) do
 begin
 WL.Clear;
 HTML4StyleSheet.GetElementSelectors(P, WL, HTML4StyleSheet.Main,
 [], cmAll, P.Document.ClientWidth, P.Document.DeviceWidth);
 P.Document.Styles.GetElementSelectors(P, WL, P.Documnt.Styles.Main,
 [], cmAll, P.Document.ClientWidth, P.Document.DeviceWidth);
 { inline style }
 if Assigned(P.SelfStyleSheet) then
 P.SelfStyleSheet.GetElementSelectors(P, WL, P.SelfStyleSheet.Main,
 [], cmAll, P.Document.ClientWidth, P.Document.DeviceWidth);
 for i := 0 to WL.Count - 1 do
 begin
 s := CSSValuetoString(WL[i]^);
 Result := '<div class="prop">' +
 copy(s, 1, FindChar(':', s)) + '' +
 copy(s, FindChar(':', s) + 1, MaxInt) +'</div>' + Result;
 end;

HTML Library18

© 2023 delphihtmlcomponents.com

 P := P.Parent;
 end;
 WL.Free;
end;

Unicode 19

© 2023 delphihtmlcomponents.com

8 Unicode

Library supports unicode for non-unicode Delphi versions (5 - 2007).

To enable unicode support, uncomment {$DEFINE WIDE} directive in htmlinc.inc file and

install TNTUnicode package.

In WIDE mode hstring is mapped to WideString and hchar is mapped to widechar type.

HTML Library20

© 2023 delphihtmlcomponents.com

9 Images

Image handling

Most of HTML components and THtDocument has OnGetImage event.

function(Sender: THtDocument; const Url: string; Element: TElement): THtBytes of object;

function should be thread-safe and return image data in TBytes or return nil if image cannot be

loaded.

Embedded images, encoded using data URI, are processed internally, OnGetImage is not

called.

When OnGetImage is not defined or return nil, THtDocument treats URL as file name and tries

to load image from file.

In case URL contains only name without path, it is combined with CurrentFile property or

application .exe path .

THtPanel has additonal default processing:

When URL is integer number and image list is assigned to Images property, URL is treated as

index in image list.

When URL starts with 'http' or 'https', it is treated as web address.

When URL starts with '/form/' rest is treated as component name for current form. It can be

TImage or TImageList and additional index, f.e. /form/ImageList1/2

Virtual image sources

For defining application-wide image sources, there is a THtVirtualImageSource class

 THtVirtualImageSource = class
 public
 function GetImage(const URL: string; var ImageData: THtBytes; DPI: integer = 96): boolean; virtual; abstract;
 end;

Each image source is registered with unique prefix, and can be used from any document.

Example:

 HtGlobal.RegisterVirtualImageSource('_resource', THtVirtualImageRes.Create);

There are following predefined sources / prefixes:

· _resource - load from resource

· _shellsmallicons - shell small icon

Images 21

© 2023 delphihtmlcomponents.com

· _shelllargeicons - shell large icons

· _dialogicons - dalog icons

· _forms - application forms

Example of image URL:

Image lists

Some HTML components has Images property, When image list is assigned, images can be

referenced by index.

Lazy loading

THtPanel has LazyLoading and BackgroundLoading properties.

In LazyLoading mode, images are loaded only when they are scrolled into view.

BackgroundImageLoading enables image loading in a separate thread.

Embedding images

To embed all images into document (using data URI) call

procedure THtDocument.EmbedAllImages;

Encoding and decoding

htimage and fmx.htimage units contains image converter implementation classes for image

encoding and decoding.

 IHtImageConverter = interface
 function EMFtoSVG(Sender: TObject; var PictData: TBytes; Width, Height: integer; const AStyle: string = ''; ATextOnly: boolean = false): hstring;
 procedure MakeTransparent(Sender: TObject;var Data: TBytes; var Ext: string; TransparentColor: cardinal);
 function DecodeJPEG(const Data: THtBytes; var Res: THtBitmapData): boolean;
 function DecodeJPEG2000(var Data: THtBytes): boolean;
 function DecodePNG(const Data: THtBytes; var Res: THtBitmapData): boolean;
 function DecodeGIF(const Data: THtBytes; var Res: THtBitmapData): boolean;
 function EncodePNG(ABitmap: THtBitmapData; out Res: TBytes): boolean;
 function EncodeJPEG(ABitmap: THtBitmapData; out Res: TBytes): boolean;
 function HTMLtoPNG(Sender: TObject; const HTML: string; MaxWidth, MaxHeight, PageWidth, PageHeight: integer;
 OnGetImage: THtGetImageData; out Res: TBytes; PagedMedia: boolean): boolean;
 function WMZtoSVG(Sender: TObject; var PictData: TBytes; Width, Height: integer; const AStyle: string = ''): hstring;
 function SVGtoEMF(Sender: TObject; const SVG: string; var Width, Height: integer): TBytes;
 function HTMLtoSVG(const HTML, Style: hstring; Width, Height: integer; Paged: boolean = false): hstring;
 end;

HTML Library22

© 2023 delphihtmlcomponents.com

To get current image converter implementation use

THtDocumentConverter.ImageConverter property

Canvases 23

© 2023 delphihtmlcomponents.com

10 Canvases

HTML rendering is abstracted from graphics libraries via THtCanvas class. There are several

implementations that can be selected globally or for certain component or document. Global

variables (defined in htcanvas):

· HtDefaultCanvasClass - default canvas for VCL

· HtUIDefaultCanvasClass - default canvas for VCL UI controls (Checkbox, Radio)

· HtFMXDefaultCanvasClass - default class for FMX

THtDocument and THtPanel has CanvasClass properties to set preferred canvas.

There are the following canvas implementations:

VCL

THtCanvasDX - rendering using DIrect2D library, best performance and quality, recommended

as default class on Windows. May not work on XP. htcanvadx unit.

THtCanvasGP - rendeding using GDI+ library. Good quality but bot so fast as DX.

htcanvasgdip unit.

THtCanvasGDI - rendering using GDI. Do not support antialiasing and has integer coordinates.

htcanvasgdi unit.

THtCanvasSKIA - good quality and speed, but not so fast as DX. htcanvasskia unit.

THtCanvasText - plain text canvas. htcanvstext unit.

THtCanvasOpenGL - OpenGL canvas, good for displaying large vector data. Work only in

window, do use as default canvas.

FMX

THtCanvasFMX - default FMX canvas. On windows may use D2D directly for better speed and

more features. fmx.htcanvasfmx unit.

THtCanvasOSX - native OSX canvas. Faster than default. fmx.htcanvasOSX unit. Note that it

cannot be used when GlobalUseMetal is set to true

THtCanvasAndroid - native Android canvas, faster than default and better quality.

fmx.htcamvasAndroid unit.

THtCanvasiOS - native iOS canvas. faster than default and better quality. fmx.htcanvasiOS unit.

To access canvas from document, use Document.Surface property.

HTML Library24

© 2023 delphihtmlcomponents.com

11 Navigation

DOM Element methods

Count: integer - number of children

Elements[Index] - child element by index

Parent - parent element (nil for root)

Next - next sibling element

NextElement - next element in DOM tree

NextVisibleElement - next visible in a DOM tree

Previous - previous sibling

PreviousElement - previous in a DOM tree

NextLineElement - next line element - text or image element with position = static and float =

none.

PreviousLineElement - previous line element - text or image element with position = static and

flow = none.

NextNonEmptySibling - next non-empty sibling element. Empty elements are BR and text

elements with blank or empty content.

PreviousNonEmptySibling - previous non-empty sibling element Empty elements are BR and

text elements with blank or empty content.

Last - last node in tree

FirstChildTag - first non-text child node

LastChildTag - last non-text child node

LastChild - last child node

ChildIndex - Index of element among sibling elements with non-empty tag

HasAsParent(const E: THtNode): boolean;

Root - root node

NodebyName - searches for node in child nodes. Supports paths (Node1/Node2/Node3...)

FindNode - recursive search of node by name (tag)

NodebyAttr - search for node by attribute name and value

NodebyNameAttr - search for node by node tag and attribute

FindNodebyAttr - recursive searching of node by attribute

NodebyNameIndex - node by tag and index

JQuery and XPath 25

© 2023 delphihtmlcomponents.com

12 JQuery and XPath

THtDocument supports DOM queries using XPath and JQuery. Example:

for E in Document.JQuery('img') do ..

Returned list has the following properties and methods:

 function GetCount: integer - count of nodes
 function AddClass(const ClassName: string): IHtNodeList - add class
 function RemoveClass(const ClassName: string): IHtNodeList - remove class
 function ToggleClass(const ClassName: string): IHtNodeList; - toggle class
 procedure Remove - delete nodes
 property Nodes[Index: integer]: THtNode - node by index
 property Attr[const Name: hstring]: hstring - attributes
 property html: hstring - Inner HTML
 property css[const Name: hstring]: hstring - CSS propeties
 property Text: hstring - add or get node text

Calls can be chained, i.e.
JQuery('div').AddClass('some').CSS['color'] := 'green'];

HTML Library26

© 2023 delphihtmlcomponents.com

13 DOM

Each element in a DOM tree have the following properties

Parent - parent node or nil

Count - number of child elements

Elements[index] - child elements

Attributes[index] - attributes

Attributes.Count - number of attributes (check Attributes for nil!)

Adding new elements

function Add(const E: TElement): TElement
Add E to child elements

function InsertAfter(const EAfter, E: TElement): TElement
Insert E after EAfter element. EAfter should be child of current element.

function InsertBefore(const EBefore, E: TElement): TElement
Insert E before EBefore element. EBefore should be child of current element.

function AppendChild(const E: TElement): TElement
Append E to child elements

function AddHTML(const HTML: hstring): THtmlNode
Add HTML

function InsertHTML(const HTML: hstring): THtmlNode -
Insert HTML at top

Deleting element

procedure DeleteChild(const E: THtNode);

Updating elements

To change whole element content use InnerHtml and OuterHTML properties.

Events 27

© 2023 delphihtmlcomponents.com

14 Events

DOM elements supports following script events

ondragstart - start drag

ondragend - end drag

ondragenter - executed on target

ondragleave - executed on target

ondrop - executed on drop target

onmousedown - mouse button pressed

onmouseup - mouse button released

onclick - element is clicked

ondblclick - element is doubleclicked

ontransitionent - end of CSS transition / animation

onmouseover - mouse enter

onmouseout - mouse leave

onmousemove - mouse moved

onresize - element is resized

onresizeend - element was resized

onscroll - element content was scrolled

Example:

<div onclick="form.MyDivClicked(this)">

For more details please refer to Scripter manual.

THtDocument events

BeforePaint - before document paint

OnGetUrl - custom loading of images and stylesheets

OnGetParam - get template parameter

OnGetImage - custom loading of images

OnRepaint - on repaint

OnClick - element is clicked

OnURLEnter - mouse enter <a> element

OnURLExit - mouse leaves <a> element

OnElementEnter - mouse enter element

OnElementExit - mouse leave element

OnSizeChanged - content bounds was changed after layout calculation

OnElementDragEnd - drag end

OnElementDragMoved - drag element moved

OnElementResizeEnd - resize end

HTML Library28

© 2023 delphihtmlcomponents.com

OnNewPage - new page (when generating paged layout)

AfterTableColumnMoved - table column was moved

OnSpellCheck - spell checking

OnCreateControl - custom Delphi control creation

AfterControlCreated - after Delphi control was created

OnAnimationEnd - animation end

OnElementDeleted - DOM element deleted

AfterImageLoaded - image was loaded (lazy or background mode)

OnImageLoadedFailed - image loading was failed

BeforeBeginScene - before BeginScene when painting

BeforeEndScene - before end scene when painting

OnShowResizeHint - show custom resize hint

BeforeElementDraw - before element is painted

For HtPanel events please refer to HtPanel section.

Adding events at runtime

Element.setAttribute('on' + eventname, EventProc)

12

Scripts 29

© 2023 delphihtmlcomponents.com

15 Scripts

THtDocument has language neutral scripts support. Scripts are executed via adapter class

 THtScriptAdapter = class
 public
 constructor Create; virtual;
 procedure AddScript(const Script, ScriptType: hstring); virtual;
 procedure Compile; virtual;
 procedure Clear; virtual;
 procedure OnLoad(const ADocument: THtDocument); virtual;
 procedure Run(Element: TElement; const Event: string; const Script: hstring); virtual;
 procedure RegisterObject(const Name: string; Value: TObject); virtual;
 function RunFunction(const Element: TElement; Func: TObject; const Params: array of variant): variant; virtual;
 end;

Scripts can be used in element events, f.e. onclick, and in <sscript> document section.

Default implementation supports Pascal scripts, to use it add htdefscripter unit (for VCL) or

fmx.fhtdefscriptadapter to uses list.

Note that GUI functions requires separate htscriptgui and fmx.htscriptgui units.

For more details please refer to Scripter manual.

HTML Library30

© 2023 delphihtmlcomponents.com

16 HTML and Plain text

THtDocument and TElement has properties for getting and setting inner and outer HTML and

inner text:

InnerHTML - get or set inner HTML

OuterHTML - get or set outer HTML

InnerText - get or set inner text (plain).

Example:

E := Doc.GetElementById('mydiv');
if Assigned(E) then
 E.InnerHTML := 'New Content';

Also HTML can be set using JQuery or XPath. Example:

Doc.JQuery('.myclass').html := 'New content';

Adding text to nodes:

Doc.JQuery('.myclass').text := 'Added text content';

16.1 Formatted HTML

To get formatted HTML use THtDocument.FormattedHTML function.

16.2 Incorrect markup

Library can handle most of incorrect markup cases (missed close tags, quotes, incorrect nested

tags, etc.).

When getting HTML back (using OuterHTML) it always be well-formed.

XML and JSON 31

© 2023 delphihtmlcomponents.com

17 XML and JSON

htxml unit contains THtNode descendant THtXMLNode for parsing XML and JSON. Use

 constructor Create(const XML: hstring); reintroduce; overload; virtual;
 constructor CreateFromFile(const FileName: hstring; Encoding: THtmlEncoding = heDefault);
 constructor CreatefromJSON(const JSON: hstring; dummy: integer = 0); overload;

it also contains SAX XML parser class: THtSAXXMLParser

HTML Library32

© 2023 delphihtmlcomponents.com

18 HTML encode

To encode text to HTML (escape) use the following functions from htmlpars unit:

 function HtmlEncode(const s: hstring): hstring;
 function HtmlEncodeAttr(const s: hstring): hstring;

Hyphenation 33

© 2023 delphihtmlcomponents.com

19 Hyphenation

To define hyphenation rules obtain language using

THtLanguage.GetLanguage(const LangCode: string): THtLanguage

and define rules using

procedure AddHyphenation(const Word: hstring; const APositions: TCardinalArray);
procedure LoadHyphenationfromStream(const ST: TStream);

HTML Library34

© 2023 delphihtmlcomponents.com

20 Delphi controls

Any Delphi control can be embedded to HTML using <control> tag.

First, its should be registered using RegisterClasses procedure, i.e.

RegisterClasses([TMemo])

Using in HTML:

<control type="TMemo"></control>

propertied can be set using control tag attributes or Delphi object notation (used in DFM):

<control type="TMemo">
 object

 end
</control>

Fonts and FontAwesome 35

© 2023 delphihtmlcomponents.com

21 Fonts and FontAwesome

Custom fonts can be embedded into document in TTF/OpenType format. When using Office

library, WOFF format is also supported.

In addition, custom fonts can be registered directly using canvas class methods

RegisterCustomFont

RegisterCustomFontData

By default documents use shared font collection. To use own font collection (f.e. document is

used in thread) pass true to AThreaded parameter of constructor.

FontAwesome

Library has built-in FontAwesome support. To enable it add htfontawesome (for VCL) or

fmx.htfontawesome (for FMX) into uses list.

After that you can use standard FA syntax like

HTML Library36

© 2023 delphihtmlcomponents.com

22 Hints

Library supports three types if hints

Standatd hints

Set HtPanel.ShowHint to true and use title attribute to set element hint, i.e.

 <div title="test">

HTML hints

Add hthints unit to uses list and use data-hint attributes, f.e.

Additinal hint classes:

.hint--top

.hint--top-left

.hint--top-right

.hint--bottom-left

.hint--bottom-right

.hint--bottom

.hint--right

.hint--left

.hint--small

.hint--medium

.hint--large

.hint--error

.hint--warning

.hint--info

.hint--success

.hint--always

.hint--rounded

.hint--no-animate

.hint--no-shadow

Float hints

Float hints are displayed using float window and can contain large HTML data.

To use it set floathint attribute.

Notifications 37

© 2023 delphihtmlcomponents.com

23 Notifications

Functions for displaying notifications (htmlcomp unit)

procedure HtNotify(const HTML, AStyles: string);
procedure HtNotifyError(const HTML : string);
procedure HtNotifyInfo(const HTML : string);
procedure HtNotifyWarning(const HTML : string);

HTML Library38

© 2023 delphihtmlcomponents.com

24 Colors and themes

Following functions are used for color encoding/decoding

 function htmlHextoColor(const s: string): cardinal;
 Convert color string in any format to color.

 function htmlHextoColorSys(const s: string; out SysColorFlag: integer): cardinal;
 Convert color string in any format to color, returns System flag for system colors.

 function HtStringtoSysColor(const Color: string): cardinal;
 Convert system color name to color using current theme.

 function htmlColortoHex(C: cardinal): string;
 Convert color to rrbbgg format

 function htmlColortoStr(C: cardinal): string;
 Convert color to #rrbbgg format

 function HtStringtoColor(const Color: hstring): cardinal;
 Convert string color code (f.e. green) to color value. When color not found returns zero

Note, that when using alpha, it should be in last two symbols: #rrggbbaa

There are number or system color names mapped to current system or Delphi theme colors on Windows and OSX.

ACTIVEBORDER
ACTIVECAPTION
APPWORKSPACE
BACKGROUND
BTNFACE
BTNHIGHLIGHT
BTNSHADOW
BTNTEXT
BUTTONFACE
BUTTONTEXT
C3DDKSHADOW
C3DFACE
C3DHIGHLIGHT
C3DHILIGHT
C3DLIGHT
C3DSHADOW
CANVAS
CANVASTEXT
CAPTIONTEXT
DESKTOP
FIELD
FIELDTEXT
GRADIENTACTIVECAPTION
GRADIENTINACTIVECAPTION
GRAYTEXT
HIGHLIGHT
HIGHLIGHTTEXT
HOTLIGHT
INACTIVEBORDER

Colors and themes 39

© 2023 delphihtmlcomponents.com

INACTIVECAPTION
INACTIVECAPTIONTEXT
INFOBK
INFOTEXT
MENU
MENUBAR
MENUHIGHLIGHT
MENUTEXT
SCROLLBAR
WINDOW
WINDOWFRAME
WINDOWTEXT

To define custom color mapping, write own

function ThemeColorProc(ColorID: integer): cardinal;

and register it using

 THtmlNode.SetThemeColorPrc(ThemeColorProc);

HTML Library40

© 2023 delphihtmlcomponents.com

25 Highlighted text

To highlight text in HtDocument set HighlightText property.

Highlight color can be set using HighlightTextColor property.

Document bounds 41

© 2023 delphihtmlcomponents.com

26 Document bounds

To calculate HTML bounds call

Doc.CalcSize(DesiredWidth)

and use Doc.DocumentWidth and DocumentHeight properties

HTML Library42

© 2023 delphihtmlcomponents.com

27 Inputs and forms

In addition to standard HTML edit, <input> element support following types:

date - date edit

time - time edit

number - number edit. Additional attributes: valuetype="float", decimaldigits, maxvalue,

minvalue

Scale and DPI 43

© 2023 delphihtmlcomponents.com

28 Scale and DPI

THtDocument

To set document scale use Document.Surface.ScaleFactor (single). 1 = 100%.

To set current DPI use Document.Surface.DPI property. Note that ScaleFactor contains final

scaling, so for DPI 192 and content scale 200% it should be 4.

HtPanel

property Scale: integer - scaling in percents
property ScaleMin: single - min scale value
property ScaleMax: single - max scale value
property ScaleFromCenter: boolean - scale from mouse cursor or left top.

To set target scaling for smooth zoom use

procedure SetTargetScale(TargetScale: integer);

HTML Library44

© 2023 delphihtmlcomponents.com

29 Selection

THtDocument has Selection property with the following members:

 // Position in element text
 StartPos, EndPos: integer;
 CellMode, SingleTable: boolean;
 //Touch markers points
 LeftPoint, RightPoint: TPointF;
 function InSelection(const E: TElement): boolean;
 function PartiallyInSelection(const E: TElement): boolean;
 function Empty: boolean;
 function Inverted: boolean;
 function FullSelected(const E: TElement): boolean;
 function RealStartElement: TElement;
 function RealEndElement: TElement;
 function RealStartPos: integer;
 function RealEndPos: integer;
 function SelectedRows: integer;
 function SelectedCols: integer;
 procedure ShrinktoText;
 procedure Clear;
 procedure SelectAll;
 procedure SaveSelection;
 procedure RestoreSelection;
 procedure Invert;
 // Element containing all selected elements
 function TopElement: TElement;
 // Table Cell containing all selected elements
 function TopCell: TElement;
 // Return selected table when selection is in CellMode and single table is selected
 function SelectedTable: TElement;
 function AtPoint(x, y: integer; out Left: boolean): boolean;
 // Return true in CellMode when E is cell of same table as Start or End element or cell outside of these tables.
 // Used in style changing procedure to determine if style should be applied to this cell
 function IsTopSelectedCell(const E: TElement): boolean;
 function SelectedFontCount: integer;
 function FirstCell: TElement;
 function LastCell: TElement;
 function LastSelected: TElement;
 // Return selection length in visible symbols (image is treated as single symbol)</summary>
 function VisibleLength: integer;
 property AbsoluteStart: integer;
 property AbsoluteEnd: integer;
 property StartElement: TElement;
 property EndElement: TElement;
 property AllSelected: boolean;
 property Text: hstring;

To change selection, set StartElement, StartPos, EndElement, EndPos properties.

TTextElement has the following members:

Selection 45

© 2023 delphihtmlcomponents.com

 function SelectedText: hstring;
 function SelectedHTMLText: hstring;
 procedure SelectWordAt(CharPos: integer);
 procedure SelectPara;

HTML Library46

© 2023 delphihtmlcomponents.com

30 Resize and drag

Resize

Block and table cell elements can be resized by user. To enable this add css resize property to

element style. Possible values

· horizontal

· vertical

· both

Resize events:

onresize - element is resized

onresizeend - element was resized

Drag and drop

To enable drag and drop add CSS draggable property to element style. Possible values:

· false

· true

· auto

Drag events:

ondragstart - start drag

ondragend - end drag

ondragenter - executed on target

ondragleave - executed on target

ondrop - executed on drop target

30.1 Sortable containers

Special predefined .sortable class turns block element into items container/list where items can

be reordered by mouse or moved between two .soirtable containers.

Search and Table of Contents 47

© 2023 delphihtmlcomponents.com

31 Search and Table of Contents

To search for all occurrences of text in THtDocument use

 function CreateSearchResult(const s: hstring; AllWords: boolean = true): hstring;

To create table of contents use

 function CreateTableofContents: hstring;

HTML Library48

© 2023 delphihtmlcomponents.com

32 Printing

From HtPanel: call

 procedure Print(PrintDialog: TPrintDialog = nil; const PrintScale: single = 1);

From document: create another document, pass print canvas class to constructor and call Print.

Example:

 PrintDoc := THtDocument.Create(Doc.CanvasClass.PrintCanvasClass);
 try
 PrintDoc.OnGetUrl := Doc.OnGetUrl;
 PrintDoc.OnGetImage := Doc.OnGetImage;
 PrintDoc.CurrentFile := Doc.CurrentFile;
 PrintDoc.Parse(Doc.OuterHTML);
 PrintDoc.GeneratePagesForPrint;
 PrintDoc.Surface.Print(PrintDialog);
 finally
 PrintDoc.Free
 end;

HTML Report Library has ready to use print preview window for VCL and FMX in

htPreviewFrame and fmx.htPreviewFrame units.

To open print preview call

 procedure ShowHtPrintPreview(ADocument: THtDocument; const AStyles: string = '';
 const ACaption: string = 'Print Preview'; AWidth: integer = 1200; AHeight: integer = 800); overload;

 procedure ShowHtPrintPreview(const AReport: hstring; const AStyles: string = '';
 const ACaption: string = 'Print Preview'; AWidth: integer = 1200; AHeight: integer = 800); overload;

PDF export 49

© 2023 delphihtmlcomponents.com

33 PDF export

THtDocument has two class methods for PDF export:

class function HTMLtoPDF(const AHTML: hstring; const AStyles: hstring = ''): TBytes;
class procedure HTMLtoPDFFile(const AHTML, FileName: string);

If you need to explicitly set some document properties, use the following code:

 D := THtDocument.Create(HtDefaultCanvasClass.PrintCanvasClass); // or HtFMXDefaultCanvasClass for FMX
 try
 D.Parse(AHTML);
 D.GeneratePagesForPrint;
 D.Surface.SavetoPDF(FileName);
 finally
 D.Free
 end;

There are several PDF export implementations included:

Direct export for all platforms

Add htoffice to uses list (requires Office library).

Windows

Using SynPDF library: add htsynpdf unit to uses list.

Using SKIA: add htcanvasSkia to uses list and call

THtPagedExporter.RegisterExporter('PDF', THtSkiaPDFExport);

OSX

Set THtCanvasOSX as FMX default canvas class or pass it to document constructor in code

above.

Android

Set THtCanvasAndroid as default canvas class or pass it to document constructor in code

above.

iOS

Set THtCanvasiOS as default canvas class or pass it to document constructor in code above.

HTML Library50

© 2023 delphihtmlcomponents.com

SVG export 51

© 2023 delphihtmlcomponents.com

34 SVG export

Normal or paged document can be exported into SVG using THtSVGCanvas from htcanvas

unit.

Draw or print using this canvas and get SVG from Document.Surface.Pages[index]

(THtPageSVG).

HTML Library52

© 2023 delphihtmlcomponents.com

35 SVG creation

Library contains helper class for creating SVG paths from code (htcanvas unit):

 THtSVGWriter = class(TFastString)
 class function StrokeStyle(AColor: cardinal; const AWidth: single;
 AStyle: THtPenStyle; const DashArray: TSingleArray = nil): string;
 class function StrokeStyleCSS(AColor: cardinal; const AWidth: single;
 AStyle: THtPenStyle; const DashArray: TSingleArray = nil): string;
 // Add command
 function Com(ACommand: hchar): THtSVGWriter;
 // Path Move to point
 function Move(const X, Y: single): THtSVGWriter;
 // Path Move to relative point
 function MoveRel(const dx, dy: single): THtSVGWriter;
 // Path Arc with radius rx, ry from Angle to Angle + sweep
 function Arc(const Rx, Ry, Angle: single; large, sweep: integer;
 const X, Y: single): THtSVGWriter;
 // Path Line to point
 function LineTo(const X, Y: single): THtSVGWriter;
 // Path Line relatively from current position
 function LineRel(const dx, dy: single): THtSVGWriter;
 // Draw line
 function Line(const x1, y1, x2, y2: single; Stroke: Cardinal;
 const StrokeWidth: single = 0): THtSVGWriter;
 function F(const Value: single): THtSVGWriter;
 // Path vertical line
 function V(const Value: single): THtSVGWriter;
 // Path relative vertical line
 function VRel(const Delta: single): THtSVGWriter;
 // Path horizontal line
 function h(const Value: single): THtSVGWriter;
 // Path relative horizontal line
 function HRel(const Delta: single): THtSVGWriter;
 function FS(const Value: single): THtSVGWriter;
 // Add string
 function s(const Value: string): THtSVGWriter;
 // Add color
 function Color(AColor: Cardinal): THtSVGWriter;
 function Stroke(const APen: THtPen): THtSVGWriter;
 function Stroke(AColor: Cardinal; const AWidth: single = 1)
 : THtSVGWriter;
 // Draw path
 function Path(const APath: string; Fill, Stroke: Cardinal;
 const StrokeWidth: single = 0): THtSVGWriter;
 // Begin path
 function BeginPath(Fill, Stroke: Cardinal; const StrokeWidth: single = 0;
 const Style: string = ''; CrispEdges: boolean = false;
 const Attr: string = ''): THtSVGWriter;
 // End path
 function EndPath: THtSVGWriter;
 // Path Z command (close figure)
 function Z: THtSVGWriter;
 // Draw text

SVG creation 53

© 2023 delphihtmlcomponents.com

 function Text(const X, Y: single; const Anchor, Value: hstring;
 const Style: string = ''; const Transform: string = '';
 const Attrs: string = ''): THtSVGWriter;
 // Draw circle
 function Circle(const CX, CY, R: single; Fill, Stroke: Cardinal;
 const StrokeWidth: single = 0): THtSVGWriter;
 function Ellipse(const CX, CY, RX, RY: single; Fill, Stroke: Cardinal;
 const StrokeWidth: single = 0): THtSVGWriter;
 // Draw rectangle
 function Rect(const X, Y, W, H: single; Fill, Stroke: Cardinal;
 const StrokeWidth: single = 0; const Style: string = '';
 const RX: single = 0; const RY: single = 0): THtSVGWriter;
 function StrokePath(const Path: THtPath; const Pen: THtPen): THtSVGWriter;
 property Empty: boolean read GetEmpty;
 end;

HTML Library54

© 2023 delphihtmlcomponents.com

36 Clipboard

htplatform unit contains platform neutral THtClipboardClass with the following methods

 THtClipboard = class
 public
 class procedure SetHTML(const AHTML, AText, ASourceFile: hstring);
 class function HasHTML: boolean;
 class function GetHTML: hstring;
 class function HasText: boolean;
 class function GetText: hstring;
 class function HasImage: boolean;
 class function GetBitmap: THtBytes;
 class function GetImage: THtBytes;
 class procedure SetImage(const AImage: THtImage);
 class function HasRTF: boolean;
 class function GetRTF: hstring;
 class function HasMathML: boolean;
 class function GetMathML: hstring;
 class function HasEMF: boolean;
 class function GetEMF: THtBytes;
 end;

	Table of Contents
	Units
	Classes
	Custom element classes
	Styles
	Quirks mode
	Controls
	HtPanel
	VirtualTrees

	CSS properties and classes
	Listing element properties

	Unicode
	Images
	Canvases
	Navigation
	JQuery and XPath
	DOM
	Events
	Scripts
	HTML and Plain text
	Formatted HTML
	Incorrect markup

	XML and JSON
	HTML encode
	Hyphenation
	Delphi controls
	Fonts and FontAwesome
	Hints
	Notifications
	Colors and themes
	Highlighted text
	Document bounds
	Inputs and forms
	Scale and DPI
	Selection
	Resize and drag
	Sortable containers

	Search and Table of Contents
	Printing
	PDF export
	SVG export
	SVG creation
	Clipboard

