e
HTML Library

© 2023 delphihtmlcomponents.com

Contents

Table of Contents

Foreword 0

Partl Units 5
Partll Classes 7
Part lll Custom element classes 9
Part IV Styles 10
PartV Quirks mode 11
Part VI Controls 12
1 HEPANEI eoeeveeeceectsssaes s st ess bbb s bbb e 12

2 VIFLUAITIES .uvveveesesseessesesssessessnsssesssessssssssesssnsssnsssesssessssssssssssnsssnsssnsssnsssnssssnsssnsssnssanes 14

Part VIl CSS properties and classes 16
1 LiSting €lement PrOPEItiESc.oeeruerureessessnsssesssssssnsssssssssssssssasssssssssssssssnssssssasssans 17

Part VIl Unicode 19
Part IX Images 20
Part X Canvases 23
Part XI Navigation 24
Part Xl JQuery and XPath 25
Part Xl DOM 26
Part XIV Events 27
Part XV Scripts 29
Part XVI HTML and Plain text 30
1 FOIMAted HTMLovuoreerreeseeeseceseesseesssesssessnsssesssessssssssssssssssnsssesssesssnssssesssesssnsssnsssnsssnssans 30

2 INCOITECE MATKUP «..eeueereeeseesseeseeseesseesseesssesssesssesssesssessseessessssesssessnsssessssesasesssesssesssnsssns 30

Part XVII XML and JSON 31
Part XVIll HTML encode 32

© 2023 delphihtmlcomponents.com

HTML Library

Part XIX
Part XX
Part XXI
Part XXIl
Part XXIlI
Part XXIV
Part XXV
Part XXVI
Part XXVII
Part XXVIII
Part XXIX

Part XXX
1

Part XXXI
Part XXXII
Part XXXIII
Part XXXIV
Part XXXV
Part XXXVI

Hyphenation
Delphi controls
Fonts and FontAwesome
Hints

Notifications
Colors and themes
Highlighted text
Document bounds
Inputs and forms
Scale and DPI
Selection

Resize and drag

Sortable containerscccvviiiiiieiiei .

Search and Table of Contents
Printing

PDF export

SVG export

SVG creation

Clipboard

Index

© 2023 delphihtmlcomponents.com

Units 5

1 Units
Core units

htmlpars - parsing and base node classes - THtNode, THtmINode
htmlcss - CSS styles, TStyledHTMLNode, TCSSStyleSheet, etc.
htcanvas - base canvas class.

htdictionary - dictionaries

hthints - HTML hints

htinet - HTTP client for loading images and styles via HTTP
htmlani - CSS animations

htpdf - direct PDF export (requires Office library).
htplatform - platform depending classes.

htresource - localization.

htscriptindy - Indy classes registration for Scripter
htscriptparse - Scripter

httemplates - template engine

htTextRenderer - classes for plain text canvas

htutils - common functions

htxml - XML and JSON parsing.

Following units has two versions depending on framework - VCL or FMX:
VCL:

htmldraw - TElement and THtDocument classes.

httables - HTML tables support - TTableElement, TTableCell, TTableRow, etc.

htsvg - SVG support - TSVGElement, TSVGPathElement, etc.

htclasses - additional element classes - TFrameElement, TInputElement, TSelectElement, etc.
htdefscriptadapter - script adapter class

htfontawesome - FontAwesome registration for VCL

htmlcomp - Ul components

htmigraph - common graphics functions

htscriptgui - GUI functions registration for Scripter

FMX

fmx.fhtmidraw
fmx.fhttables
fmx.fhtsvg

fmx fhtclasses

fmx fhtdefscriptadapter

© 2023 delphihtmlcomponents.com

HTML Library

fmx.htfontawesome
fmx.fhtmlcomp
fmx.fhtmigraph
fmx htscriptgui

VCL only units
htdirect2d - Direct2D API

htforms - HTML forms
htgif - GIF support for old Delphi

htmlcatbuttons - TCategoryButtons with HTML support

htmldbcomp - DBlabel and TemplatePanel
htchrometabs - ChromeTabs descendant

htmlsmarttabs - SmartTabs with HTML support

htmlvtree - VirtualTree with HTML support

htremotedebug - remote debugger for Scripter

htscriptdebug - sample debugger for Scripter
htsynpdf - PDF export using SynPDF

htvideo - Video element using libvlc

htzip - ZIP support for Delphi 5-2007.

Canvas classes units

htcanvasdx - Direct2D canvas
htcanvasgdi - GDI canvas

htcanvasgdip - GDI+ canvas
htcanvaslazarus - standard Lazarus canvas
htcanvasopengl - OpenGL canvas
htcanvasskia - Skia canvas

htcanvastex - plain text canvas

fmx. htcanvasFMX - standard FMX canvas
fmx.htcanvasAndroid - native Android canvas
fmx.htcanvasiOS - native iOS canvas
fmx.htcanvasOSX - native OS X canvas
fmx.hcanvasText - plain text canvas

fmx. OSXPDF - native PDF export for OSX

© 2023 delphihtmlcomponents.com

Classes 7

2 Classes
HTML node classes has the following hierarchy:

THtNode - base node class, htmlpars unit.
THtXMLNode - XML node, htxml unit
THtmINode - base HTML node class, htmlpars unit
TStyledHTMLNode - node with CSS styles support (Style property), htmlcss unit
TElement - general DOM element class, htmldraw / fmx.fhtmldraw unit
THtDocument - HTML document, htmldraw / fmx.fhtmldraw unit
TTableElement - HTML table, httables / fmx.fhttables unit
TTableCell - HTML table cell, httables / fmx.fhttables unit
TTableRow HTML table row, httables / fmx.fhttables unit
TSVGElement - SVG element, htsvg / fmx.fhtsvg unit
TSVGBaseElement - base class for SVG elements, htsvg /
fmx.fhtsvg unit
TSVGPathElement
TSVGGElement
TSVGDefsElement
TSVGRectElement
TSVGLineElement
TSVGPolylineElement
TSVGEllipseElement
TSVGCircleElement
TSVGTextElement
TSVGImageElement
TSVGUseElement
TSVGForeignObject
TSVGClipPathElement
TImageElement - HTML image, htmldraw / fmx.fhtmldraw unit
TlframeElement - iframe element, htmldraw /
fmx.fhtmldraw unit
TTextElement - HTML text element, htmldraw / fmx.fhtmldraw
unit
TDetailsElement - HTML details element, htmldraw /
fmx.fhtmldraw unit
TBaselnputElement - basic HTML input element, htmldraw /
fmx.fhtmldraw unit
TInputElement - input element - edit, radio, checkbox.
htclasses / fmx.fhtclasses unit
TSelectElement - select element. htclasses /
fmx.fhtclasses unit

© 2023 delphihtmlcomponents.com

HTML Library

fmx.fhtclasses unit

fmx.fhtmldraw unit

fmx.fhtclasses unit

unit

TTextArea element - textarea element. htclasses /
TControlElement -container for VCL/FMX controls, htmldraw /
TFieldSetElement - fieldset, htclasses / fmx.fhtclasses unit
THtLabelElement - label element, htclasses / fmx.fhtclasses unit
THtCommentElement - comment (!) element, htclasses /

TFrameSetElement - frameset element, htclasses / fmx.fhtclasses

TFrameElement - frame element, htclasses / fmx.fhtclasses unit

© 2023 delphihtmlcomponents.com

Custom element classes 9

3 Custom element classes

To register or override element class use HtRegisterElementClass from htmldraw unit

procedure HtRegisterElementClass (const Tag: string; const ElementClass: THtElementCla:

© 2023 delphihtmlcomponents.com

10

HTML Library

Styles

There are several places where CSS styles can be defined

inline element style = ".." attribute
document <style> tags

control Styles property (f.e. HtPanel.Styles)
HtGlobal.Styles property
HTML4Stylesheet

When calculating element style, stylesheets from above list are applied in reverse order.

1. Inline element style. F.e. . To check inline style use
Element.SelfStyleSheet property.

2. Properties set by HTML4 attributes. F.e. <image width="300"> will add width:300px; to
SelfStylesheet.

3. Properties set by HTML4 default stylesheet. F.e. tag will cause font-weight:bold added
to calculated style.

4. Properties inherited from parent elements. F.e. direction:rtl can be inherited from parent.

Properties calculated from document <style>..</style> section.

6. Properties calculated from Editor.Styles (or HtPanel.Styles)

wv

To add global CSS rules use HtGlobal.Styles.Add.
To add new rules to document use Doc.Styles.Parse(NewCSS)

By default same stylesheets are cached and same styles are shared between documents.
To prevent this set THTDocument.SharedStyles to false.

© 2023 delphihtmlcomponents.com

Quirks mode 11

5 Quirks mode

Handling of some CSS properties depends on document header (see quirks mode
https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks Mode and Standards Mode)
THtDocument and THtPanel has QuirksModeSelector property which defines whan mode will

be choosen

gmAuto - depents on header

gmDocType - treat all documents as having DOCTYPE
gmQuirks - treat all documents as not having DOCTYPE

© 2023 delphihtmlcomponents.com

https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks_Mode_and_Standards_Mode

12

HTML Library

6.1

Controls

Most of HTML enabled controls have two main properties: HTML for defining HTML content
and Styles for CSS styles.

VCL controls (htmlcomp unit)

THtHint - HTML enabled hint window
THtBalloonHint - HTML enabled balloon hint window
THtLabel - HTML enabled label

THtCheckBox - HTML enabled checkbox

THtRadioButton - HTML enabled radio

THtListbox - Listbox with HTML enabled items

THtButton - HTML enabled button

THtSpeedButton - HTML enabled speedbutton

THtPopupMenu - HTML enabled popup menu

THtCombolist - HTML enabled combo

THtColorCombo - color picker combo

THtTabset - HTML enabled tabset

THtStatusBar - HTML enabled status bar

THtNotiyWindow - HTML enabled notification window
THtMetroPanel - Metro-like panel

THtFloatForm - floating form with HtPanel

THtVirtualTreeView - HTML enabled VirtualTreeView descendant
THtVirtualXMLTree - HTML enabled intercative VirtualTreeView descendant
THtChromeTabs - HTML enabled ChromeTabs

THtSmartTabs - HTML enabled rkSmartTabs

THtCatButtons - HTML enabled category buttons

HtPanel

THtPanel
Main HTML control, supports scrolling, zoom, gestures, lazy and delayed image loading, text
selection, autoheight.

Published Properties:

Active : boolean - enable or disable mouse event processing. Disable for faster
scrolling and resize.

AdaptiveZoom: boolean - switch between proportional zoom and browser-like (fit to widow)
mode.

AllowFocus : boolean - allow/disallow focus.

AllowScaling : boolean - allow zoom using Ctrl+Wheel.

AutoHeight : boolean - automatic height calculation.

© 2023 delphihtmlcomponents.com

Controls 13

BackgroundlmagelLoading: boolean - load images in separate thread.
ClearHTMLAftrerLoad: boolean - clear HTML property after document is loaded to reduce
memory consumption

CurrentFile :string - full name of file loaded to panel, used to expand path of images
referenced by document.

EnableSelection: boolean - enable/disable text selection

HorizontalScrollBar - horizontal scrollbar mode

HTML : TStrings - set HTML content
Images : Timagelist - linked Image list. Images from this list can be referenced by index:
src="1"

LazylmagelLoading: boolean - load image only when it is scrolled into view
HighlightTextColor - color of highlighted text

PreservePositionOnHTMLChange - do not reset scroll offsets when HTML is changed.
QuircksModeSelector - select how to handledocuments without DOCTYPE, see Quicks mode

section.

Scale :integer - zoom in percents

ScaleFromCenter: boolean - switch between scaling from left top and mouse cursor
ScaleMin :integer - minimum scale value

ScaleMax : integer - maximim scale value

Script : TStrings - additional pascal scripts

SelectHandleStyle - style of selection handles (on touch-enabled devices)
ShowHing - show hints in elements (title attribute)

Styles : TStrings - additional CSS styles

TouchScroll : boolean - enable scroll by pressing and moving mouse.

VerticalScrollBar - vertical scrollbar mode
WebLoading - enable loading images and styles from web.

Public properties:

Doc : THtDocument - HTML document.

Document : THtDocument - HTML document - same as Doc
CanvasClass - canvas class used for displaying document
ScriptAdapter - document script adapter (see Scripter manual)

Events
AfterControlCreated - called after creating Delphi control
AfterPaint - called after paint (after EndScene)

AfterTableColumnMoved - called after HTML table column was moved

OnGetParam - get parameter for templates in comments (THtTemplatePanel)
OnGetURL - custom handling of CSS stylesheets, font and image URLs.
OnGetlmage - custom handling of image URLs

OnURLCLick - called when <a> element is clicked. Use Sender['href'] to get URL.
OnURLEnter - called when mouse enters <a> element. Use Sender['href'] to get URL.

© 2023 delphihtmlcomponents.com

14

HTML Library

6.2

OnURLExit - called when mouse leaves <a> element. Use Sender['href'] to get URL.
OnElementEnter - called when mouse enter any element

OnElementExit - called when mouse leaves any element

OnMouseWheel - called on mouse wheel

OnAnimationEnd - called after animation is finished

OnElementDragEnd - called when element is dropped

OnElementResizeEnd - called when element is resized

OnElementClick - called when element is clicked

OnElementClickEx - same as OnElementClick but with additional parameters
OnAfterlmagelLoaded - called after image load (lazy or background mode)
OnlmageloadFailed - called if image load was failed

OnScrollBarPaint - paint event for vertical scrollbar

OnCreateControl - custom handling of Delphi controls creation
OnShowResizeHint - custom resize hint handling

OnScroll - called after scroll

Methods

Scroll(DX, DY) - scroll content

ScrollintoView(Element) - scroll element into view
ScrollintoCenter - scroll element into window center
ScrollintoTop - scroll element to window top
ScrollRectIntoView - scroll document rect into view
ScrollCanvasRectIntoView - scroll canvas rectangle into view
CopySelectiontoClipboard - copy selected content to clipboard
CopytoClipboard - copy whole document to clipboard
LoadfromFile - load document from file

LoadfromURL - load document from URL
LoadfromString - load document from string
LoadfromResource - load document from resource

Print - print document

FindDialog - execute find dialog

ReplaceDialog - execute replace dialog

ShowFloatHint - show hint for element

HideFloatHint - hide hint

ScalefromPoint - scale document from point
SetTargetPosition - set target position for smooth scrolling
SetTargetScale - set target scale for smooth zoom

VirtualTrees

THtVirtualTree and THtVirtualXMLTree classes are TVirtualStringTree descendants with

HTML support.
They are located in a htmlvtree unit.

© 2023 delphihtmlcomponents.com

Controls 15

Please note that htmlvtree_* package is not installed automatically, you can install it manually
after installing VirtualTrees library from Getlt or other source.

© 2023 delphihtmlcomponents.com

16

HTML Library

CSS properties and classes
Properties

Element CSS properties can be accessed via Element.Style property. For example

function BorderTopStyle: TLineStyle;
function BorderRightStyle: TLineStyle;
function BorderBottomStyle: TLineStyle;
function BorderLeftStyle: TLineStyle;
function BoxShadow: TElementShadow;

function TextShadow: TElementShadow;
function FlexDirection: TCSSFlexDirection;
function JustifyContent: TCSSJustifyContent;

Some properties are of TMeasure type, to get actual pixel value use its Plxels (integer) or
FPixels (float) property.
Also it has Value and MUnit (measurement unit) properties.

Properties cannot be changed directly, to change it use Element.AddCSS method. For example

Element .AddCSS ('color: black');

AddCSS has two additional parameters
e UpdateStyleAttr - element style attribute will be updated
e Weight - custom CSS weight (priority)

To change porperty without affecting style attribute, it is better to use AddvirtualCSS method.
To clear CSS property value (revert to default) use ClearCSS method, or ClearCSSRecursive
(clear in element and all descendants).

Property can be changed for number of selected elements, use css[] property of JQuery or
XPath result. For example

Doc.JQuery('img.small') .css|'border'] := 'solid red lpx';

Inline element stylesheet can be accessed via SelfStylesheet property. Note that it contains
properties from both inline style and virtual style.

Virtual style contains properties calculated from element attributes and added from code using
AddVirtualCSS.

To change whole inline style use SelfStyle property, SetAttribute method or Attr['style’]
property. Attr[] will only change attribute, but not affect stylesheet, SetAttribute and
SelfStyle will immediately apply new value to inline stylesheet.

© 2023 delphihtmlcomponents.com

CSS properties and classes 17

Classes

StyleClass or ClassName or Attr['class'] - get current classes
HasClass - check is element has class

RemoveClass - remove class from element

ToggleClass - add or remove class

When using JQuery or XPath following methods are available:

e HasClass - check is element has class
e RemoveClass - remove class from element
e ToggleClass - add or remove class

Example:

Doc.JQuery('div.row') .addClass ('selected');

71 Listing element properties
Example of getting all CSS properties for element

function TForml.GetCurrentCSS(P: TElement): string;
var WL: TCSSWeightList;

P: TElement;

i: integer;

s: string;

begin
WL := TCSSWeightList.Create(16);
Result := '"';
while Assigned(P) do
begin
WL.Clear;

HTML4StyleSheet.GetElementSelectors (P, WL, HTML4StyleSheet.Main,
[], cmAll, P.Document.ClientWidth, P.Document.DeviceWidth) ;
P.Document.Styles.GetElementSelectors (P, WL, P.Documnt.Styles.Main,
[], cmAll, P.Document.ClientWidth, P.Document.DeviceWidth) ;
{ inline style }
if Assigned(P.SelfStyleSheet) then
P.SelfStyleSheet.GetElementSelectors (P, WL, P.SelfStyleSheet.Main,
[], cmAll, P.Document.ClientWidth, P.Document.DeviceWidth) ;

for i := 0 to WL.Count - 1 do
begin
s := CSSValuetoString (WL[i]");
Result := '<div class="prop">' +
copy(s, 1, FindChar(':', s)) + '' +
copy (s, FindChar(':', s) + 1, MaxInt) +'</div>' + Result;
end;

© 2023 delphihtmlcomponents.com

18

HTML Library

P := P.Parent;
end;
WL.Free;
end;

© 2023 delphihtmlcomponents.com

Unicode 19

8 Unicode
Library supports unicode for non-unicode Delphi versions (5 - 2007).
To enable unicode support, uncomment {$DEFINE WIDE} directive in htmlinc.inc file and

install TNTUnicode package.

In WIDE mode hstring is mapped to WideString and hchar is mapped to widechar type.

© 2023 delphihtmlcomponents.com

HTML Library

Images
Image handling

Most of HTML components and THtDocument has OnGetimage event.

function (Sender: THtDocument; const Url: string; Element: TElement): THtBytes of obje

function should be thread-safe and return image data in TBytes or return nil if image cannot be
loaded.

Embedded images, encoded using data URI, are processed internally, OnGetimage is not
called.

When OnGetlmage is not defined or return nil, THtDocument treats URL as file name and tries
to load image from file.

In case URL contains only name without path, it is combined with CurrentFile property or
application .exe path .

THtPanel has additonal default processing:

When URL is integer number and image list is assigned to Images property, URL is treated as
index in image list.

When URL starts with "http' or "https’, it is treated as web address.

When URL starts with '/form/' rest is treated as component name for current form. It can be
TImage or TImagelist and additional index, f.e. /fform/ImagelList1/2

Virtual image sources

For defining application-wide image sources, there is a THtVirtuallmageSource class

THtVirtualImageSource = class
public

function GetImage (const URL: string; var ImageData: THtBytes; DPI: integer = 96):
end;

Each image source is registered with unique prefix, and can be used from any document.
Example:

HtGlobal.RegisterVirtualImageSource (' resource', THtVirtualImageRes.Create);
There are following predefined sources / prefixes:

e resource - load from resource
e shellsmallicons - shell small icon

© 2023 delphihtmlcomponents.com

Images 21

¢ _shelllargeicons - shell large icons
¢ _dialogicons - dalog icons
e _forms - application forms

Example of image URL:

Image lists

Some HTML components has Images property, When image list is assigned, images can be
referenced by index.

Lazy loading

THtPanel has LazyLoading and BackgroundLoading properties.
In LazyLoading mode, images are loaded only when they are scrolled into view.
Backgroundimageloading enables image loading in a separate thread.

Embedding images

To embed all images into document (using data URI) call

procedure THtDocument.EmbedAllImages;
Encoding and decoding

htimage and fmx.htimage units contains image converter implementation classes for image
encoding and decoding.

IHtImageConverter = interface
function EMFtoSVG (Sender: TObject; wvar PictData: TBytes; Width, Height: integer;
procedure MakeTransparent (Sender: TObject;var Data: TBytes; wvar Ext: string; Tral
function DecodeJPEG (const Data: THtBytes; wvar Res: THtBitmapData): boolean;
function DecodeJPEG2000 (var Data: THtBytes): boolean;
function DecodePNG (const Data: THtBytes; wvar Res: THtBitmapData): boolean;
function DecodeGIF (const Data: THtBytes; wvar Res: THtBitmapData): boolean;
function EncodePNG (ABitmap: THtBitmapData; out Res: TBytes): boolean;
function EncodeJPEG (ABitmap: THtBitmapData; out Res: TBytes): boolean;
function HTMLtoPNG (Sender: TObject; const HTML: string; MaxWidth, MaxHeight, Pagel
OnGetImage: THtGetImageData; out Res: TBytes; PagedMedia: boolean) : boolean;
function WMZtoSVG (Sender: TObject; war PictData: TBytes; Width, Height: integer;
function SVGtoEMF (Sender: TObject; const SVG: string; var Width, Height: integer)
function HTMLtoSVG (const HTML, Style: hstring; Width, Height: integer; Paged: boo
end;

© 2023 delphihtmlcomponents.com

22

HTML Library

To get current image converter implementation use
THtDocumentConverter.ImageConverter property

© 2023 delphihtmlcomponents.com

Canvases 23

10 Canvases

HTML rendering is abstracted from graphics libraries via THtCanvas class. There are several
implementations that can be selected globally or for certain component or document. Global
variables (defined in htcanvas):

e HtDefaultCanvasClass - default canvas for VCL
e HtUIDefaultCanvasClass - default canvas for VCL Ul controls (Checkbox, Radio)
e HtFMXDefaultCanvasClass - default class for FMX

THtDocument and THtPanel has CanvasClass properties to set preferred canvas.
There are the following canvas implementations:
VCL

THtCanvasDX - rendering using Direct2D library, best performance and quality, recommended
as default class on Windows. May not work on XP. htcanvadx unit.

THtCanvasGP - rendeding using GDI+ library. Good quality but bot so fast as DX.
htcanvasgdip unit.

THtCanvasGDI - rendering using GDI. Do not support antialiasing and has integer coordinates.
htcanvasgdi unit.

THtCanvasSKIA - good quality and speed, but not so fast as DX. htcanvasskia unit.
THtCanvasText - plain text canvas. htcanvstext unit.

THtCanvasOpenGL - OpenGL canvas, good for displaying large vector data. Work only in
window, do use as default canvas.

FMX

THtCanvasFMX - default FMX canvas. On windows may use D2D directly for better speed and
more features. fmx.htcanvasfmx unit.

THtCanvasOSX - native OSX canvas. Faster than default. fmx.htcanvasOSX unit. Note that it
cannot be used when GlobalUseMetal is set to true

THtCanvasAndroid - native Android canvas, faster than default and better quality.
fmx.htcamvasAndroid unit.

THtCanvasiOS - native iOS canvas. faster than default and better quality. fmx.htcanvasiOS unit.

To access canvas from document, use Document.Surface property.

© 2023 delphihtmlcomponents.com

24

HTML Library

11

Navigation

DOM Element methods

Count: integer - number of children

Elements[Index] - child element by index

Parent - parent element (nil for root)

Next - next sibling element

NextElement - next element in DOM tree

NextVisibleElement - next visible in a DOM tree

Previous - previous sibling

PreviousElement - previous in a DOM tree

NextLineElement - next line element - text or image element with position = static and float =
none.

PreviousLineElement - previous line element - text or image element with position = static and
flow = none.

NextNonEmptySibling - next non-empty sibling element. Empty elements are BR and text
elements with blank or empty content.

PreviousNonEmptySibling - previous non-empty sibling element Empty elements are BR and
text elements with blank or empty content.

Last - last node in tree

FirstChildTag - first non-text child node

LastChildTag - last non-text child node

LastChild - last child node

ChildIindex - Index of element among sibling elements with non-empty tag
HasAsParent(const E: THtNode): boolean;

Root - root node

NodebyName - searches for node in child nodes. Supports paths (Node1/Node2/Node3...)
FindNode - recursive search of node by name (tag)

NodebyAttr - search for node by attribute name and value

NodebyNameAttr - search for node by node tag and attribute

FindNodebyAttr - recursive searching of node by attribute

NodebyNamelndex - node by tag and index

© 2023 delphihtmlcomponents.com

JQuery and XPath

12 JQuery and XPath

THtDocument supports DOM queries using XPath and JQuery. Example:

for E in Document.JQuery('img') do

Returned list has the following properties and methods:

function GetCount: integer

function AddClass (const ClassName: string): IHtNodeList
function RemoveClass (const ClassName: string): IHtNodelList
function ToggleClass (const ClassName: string): IHtNodelist;
procedure Remove

property Nodes[Index: integer]: THtNode -

property Attr[const Name: hstring]: hstring

property html: hstring

property css[const Name: hstring]: hstring

property Text: hstring -

Calls can be chained, i.e.
JQuery ('div') .AddClass('some') .CSS['color'] := 'green'];

© 2023 delphihtmlcomponents.com

26

HTML Library

13

DOM

Each element in a DOM tree have the following properties

Parent - parent node or nil

Count - number of child elements

Elements[index] - child elements

Attributes[index] - attributes

Attributes.Count - number of attributes (check Attributes for nil!)

Adding new elements

function Add(const E: TElement): TElement

Add E to child elements
function InsertAfter (const EAfter, E: TElement): TElement

Insert E after EAfter element. EAfter should be child of current element.
function InsertBefore(const EBefore, E: TElement): TElement

Insert E before EBRefore element. EBefore should be child of current element.
function AppendChild(const E: TElement): TElement

Append E to child elements
function AddHTML (const HTML: hstring): THtmlNode

Add HTML
function InsertHTML (const HTML: hstring): THtmlNode -

Insert HTML at top

Deleting element

procedure DeleteChild(const E: THtNode) ;
Updating elements

To change whole element content use InnerHtml and OuterHTML properties.

© 2023 delphihtmlcomponents.com

Events

14

Events
DOM elements supports following script events

ondragstart - start drag

ondragend - end drag

ondragenter - executed on target
ondragleave - executed on target
ondrop - executed on drop target
onmousedown - mouse button pressed
onmouseup - mouse button released
onclick - element is clicked

ondblclick - element is doubleclicked
ontransitionent - end of CSS transition / animation
onmouseover - mouse enter
onmouseout - mouse leave
onmousemove - mouse moved
onresize - element is resized
onresizeend - element was resized
onscroll - element content was scrolled

Example:
<div onclick="form.MyDivClicked (this) ">

For more details please refer to Scripter manual.
THtDocument events

BeforePaint - before document paint

OnGetUrl - custom loading of images and stylesheets
OnGetParam - get template parameter

OnGetlmage - custom loading of images

OnRepaint - on repaint

OnClick - element is clicked

OnURLEnter - mouse enter <a> element

OnURLEXxit - mouse leaves <a> element
OnElementEnter - mouse enter element
OnElementExit - mouse leave element
OnSizeChanged - content bounds was changed after layout calculation
OnElementDragEnd - drag end
OnElementDragMoved - drag element moved
OnElementResizeEnd - resize end

27

© 2023 delphihtmlcomponents.com

28

HTML Library

OnNewPage - new page (when generating paged layout)
AfterTableColumnMoved - table column was moved
OnSpellCheck - spell checking

OnCreateControl - custom Delphi control creation
AfterControlCreated - after Delphi control was created
OnAnimationEnd - animation end

OnElementDeleted - DOM element deleted
AfterlmagelLoaded - image was loaded (lazy or background mode)
OnlmageloadedFailed - image loading was failed
BeforeBeginScene - before BeginScene when painting
BeforeEndScene - before end scene when painting
OnShowResizeHint - show custom resize hint
BeforeElementDraw - before element is painted

For HtPanel events please refer to HtPanell 121 section.

Adding events at runtime

Element.setAttribute('on' + eventname, EventProc)

© 2023 delphihtmlcomponents.com

Scripts 29

15 Scripts

THtDocument has language neutral scripts support. Scripts are executed via adapter class

THtScriptAdapter = class
public
constructor Create; wvirtual;
procedure AddScript (const Script, ScriptType: hstring); wvirtual;
procedure Compile; wvirtual;
procedure Clear; virtual;
procedure Onload(const ADocument: THtDocument); wvirtual;
procedure Run (Element: TElement; const Event: string; const Script: hstring); wvir
procedure RegisterObject (const Name: string; Value: TObject); wvirtual;
function RunFunction (const Element: TElement; Func: TObject; const Params: array
end;

Scripts can be used in element events, f.e. onclick, and in <sscript> document section.
Default implementation supports Pascal scripts, to use it add htdefscripter unit (for VCL) or
fmx.fhtdefscriptadapter to uses list.

Note that GUI functions requires separate htscriptgui and fmx.htscriptgui units.

For more details please refer to Scripter manual.

© 2023 delphihtmlcomponents.com

30 HTML Library

16 HTML and Plain text

THtDocument and TElement has properties for getting and setting inner and outer HTML and
inner text:

InnerHTML - get or set inner HTML
OuterHTML - get or set outer HTML
InnerText - get or set inner text (plain).

Example:
E := Doc.GetElementById('mydiv');
if Assigned(E) then
E.InnerHTML := 'New Content"';

Also HTML can be set using JQuery or XPath. Example:
Doc.JQuery ('.myclass').html := 'New content';

Adding text to nodes:

Doc.JQuery ('.myclass') .text : 'Added text content';

16.1 Formatted HTML
To get formatted HTML use THtDocument.FormattedHTML function.
16.2 Incorrect markup

Library can handle most of incorrect markup cases (missed close tags, quotes, incorrect nested
tags, etc.).
When getting HTML back (using OuterHTML) it always be well-formed.

© 2023 delphihtmlcomponents.com

XML and JSON 31

17 XML and JSON

htxml unit contains THtNode descendant THtXMLNode for parsing XML and JSON. Use
constructor Create (const XML: hstring); reintroduce; overload; virtual;

constructor CreateFromFile (const FileName: hstring; Encoding: THtmlEncoding = heDe
constructor CreatefromJSON (const JSON: hstring; dummy: integer = 0); overload;

it also contains SAX XML parser class: THtSAXXMLParser

© 2023 delphihtmlcomponents.com

32 HTML Library

18 HTML encode

To encode text to HTML (escape) use the following functions from htmlpars unit:

function HtmlEncode (const s: hstring): hstring;
function HtmlEncodeAttr (const s: hstring): hstring;

© 2023 delphihtmlcomponents.com

Hyphenation 33

19 Hyphenation

To define hyphenation rules obtain language using

THtLanguage.GetLanguage (const LangCode: string): THtLanguage

and define rules using

procedure AddHyphenation (const Word: hstring;
procedure LoadHyphenationfromStream(const ST:

const APositions:
TStream) ;

TCardinalArray) ;

© 2023 delphihtmlcomponents.com

34

HTML Library

20

Delphi controls

Any Delphi control can be embedded to HTML using <control> tag.
First, its should be registered using RegisterClasses procedure, i.e.

RegisterClasses ([TMemo])

Using in HTML:

<control type="TMemo"></control>

propertied can be set using control tag attributes or Delphi object notation (used in DFM):

<control type="TMemo">
object
end

</control>

© 2023 delphihtmlcomponents.com

Fonts and FontAwesome 35

21 Fonts and FontAwesome

Custom fonts can be embedded into document in TTF/OpenType format. When using Office
library, WOFF format is also supported.
In addition, custom fonts can be registered directly using canvas class methods

RegisterCustomFont
RegisterCustomFontData

By default documents use shared font collection. To use own font collection (f.e. document is
used in thread) pass true to AThreaded parameter of constructor.

FontAwesome

Library has built-in FontAwesome support. To enable it add htfontawesome (for VCL) or
fmx.htfontawesome (for FMX) into uses list.
After that you can use standard FA syntax like

© 2023 delphihtmlcomponents.com

HTML Library

Hints

Library supports three types if hints
Standatd hints

Set HtPanel.ShowHint to true and use title attribute to set element hint, i.e.

<div title="test">

HTML hints

Add hthints unit to uses list and use data-hint attributes, f.e.

Additinal hint classes:

hint--top
hint--top-left
hint--top-right
.hint--bottom-left
hint--bottom-right
.hint--bottom
hint--right
.hint--left
.hint--small
.hint--medium
hint--large
.hint--error
hint--warning
.hint--info
.hint--success
hint--always
.hint--rounded
.hint--no-animate
.hint--no-shadow

Float hints

Float hints are displayed using float window and can contain large HTML data.
To use it set floathint attribute.

© 2023 delphihtmlcomponents.com

Notifications

23 Notifications

Functions for displaying notifications (htmlcomp unit)

procedure HtNotify(const HTML, AStyles: string);
procedure HtNotifyError (const HTML : string);
procedure HtNotifyInfo (const HTML : string);
procedure HtNotifyWarning(const HTML : string);

37

© 2023 delphihtmlcomponents.com

38

HTML Library

24

Colors and themes

Following functions are used for color encoding/decoding

function htmlHextoColor (const s: string): cardinal;
Convert color string in any format to color.

function htmlHextoColorSys (const s: string; out SysColorFlag: integer): cardinal;
Convert color string in any format to color, returns System flag for system colors.

function HtStringtoSysColor (const Color: string): cardinal;
Convert system color name to color using current theme.

function htmlColortoHex (C: cardinal): string;
Convert color to rrbbgg format

function htmlColortoStr(C: cardinal): string;
Convert color to #rrbbgg format

function HtStringtoColor (const Color: hstring): cardinal;
Convert string color code (f.e. green) to color value. When color not found returns

Note, that when using alpha, it should be in last two symbols: #rrggbbaa
There are number or system color names mapped to current system or Delphi theme color

ACTIVEBORDER
ACTIVECAPTION
APPWORKSPACE
BACKGROUND
BTNFACE
BTNHIGHLIGHT
BTNSHADOW
BTNTEXT
BUTTONFACE
BUTTONTEXT
C3DDKSHADOW
C3DFACE
C3DHIGHLIGHT
C3DHILIGHT
C3DLIGHT
C3DSHADOW
CANVAS
CANVASTEXT
CAPTIONTEXT
DESKTOP

FIELD
FIELDTEXT
GRADIENTACTIVECAPTION
GRADIENTINACTIVECAPTION
GRAYTEXT
HIGHLIGHT
HIGHLIGHTTEXT
HOTLIGHT
INACTIVEBORDER

© 2023 delphihtmlcomponents.com

Colors and themes

INACTIVECAPTION
INACTIVECAPTIONTEXT
INFOBK

INFOTEXT

MENU

MENUBAR
MENUHIGHLIGHT
MENUTEXT
SCROLLBAR
WINDOW
WINDOWFRAME
WINDOWTEXT

To define custom color mapping, write own
function ThemeColorProc (ColorID: integer): cardinal;
and register it using

THtmlNode.SetThemeColorPrc (ThemeColorProc) ;

39

© 2023 delphihtmlcomponents.com

40

HTML Library

25

Highlighted text

To highlight text in HtDocument set HighlightText property.
Highlight color can be set using HighlightTextColor property.

© 2023 delphihtmlcomponents.com

Document bounds

26 Document bounds

To calculate HTML bounds call

Doc.CalcSize (DesiredWidth)

and use Doc.DocumentWidth and DocumentHeight properties

4

© 2023 delphihtmlcomponents.com

42

HTML Library

27

Inputs and forms

In addition to standard HTML edit, <input> element support following types:

date - date edit
time - time edit

number - number edit. Additional attributes: valuetype="float", decimaldigits, maxvalue,

minvalue

© 2023 delphihtmlcomponents.com

Scale and DPI 43

28 Scale and DPI
THtDocument

To set document scale use Document.Surface.ScaleFactor (single). 1 = 100%.
To set current DPI use Document.Surface.DPI property. Note that ScaleFactor contains final
scaling, so for DPI 192 and content scale 200% it should be 4.

HtPanel

property Scale: integer - scaling in percents

property ScaleMin: single - min scale value

property ScaleMax: single - max scale value

property ScaleFromCenter: boolean - scale from mouse cursor or left top.

To set target scaling for smooth zoom use

procedure SetTargetScale (TargetScale: integer);

© 2023 delphihtmlcomponents.com

44 HTML Library

29 Selection

THtDocument has Selection property with the following members:

// Positi
StartPos,
CellMode,
//Touch m
LeftPoint
function
function
function
function
function
function
function
function
function
function
function
procedure
procedure
procedure
procedure
procedure
procedure

on in element text
EndPos: integer;
SingleTable: boolean;
arkers points
, RightPoint:
InSelection (const E:
PartiallyInSelection (const E:
Empty: boolean;

Inverted: boolean;
FullSelected(const E: TElement) :
RealStartElement: TElement;
RealEndElement: TElement;
RealStartPos: integer;
RealEndPos: integer;
SelectedRows: integer;
SelectedCols: integer;
ShrinktoText;

Clear;

SelectAll;

SaveSelection;
RestoreSelection;

Invert;

TPointF;
TElement) :

boolean;
TElement) :

boolean;

boolean;

// Element containing all selected elements
function TopElement: TElement;
// Table Cell containing all selected elements
function TopCell: TElement;
// Return selected table when selection is in CellMode and single table is selected
function SelectedTable: TElement;
function AtPoint (x, y: integer; out Left: boolean): boolean;
// Return true in CellMode when E is cell of same table as Start or End element or
// Used in style changing procedure to determine if style should be applied to thi
function IsTopSelectedCell (const E: TElement): boolean;
function SelectedFontCount: integer;
function FirstCell: TElement;
function LastCell: TElement;
function LastSelected: TElement;
// Return selection length in visible symbols (image is treated as single symbol)</
function VisibleLength: integer;
property AbsoluteStart: integer;
property AbsoluteEnd: integer;
property StartElement: TElement;
property EndElement: TElement;
property AllSelected: boolean;
property Text: hstring;

To change selection, set StartElement, StartPos, EndElement, EndPos properties.

TTextElement has the following members:

© 2023 delphihtmlcomponents.com

Selection 45

function SelectedText: hstring;

function SelectedHTMLText: hstring;
procedure SelectWordAt (CharPos: integer);
procedure SelectPara;

© 2023 delphihtmlcomponents.com

46

HTML Library

30

30.1

Resize and drag
Resize

Block and table cell elements can be resized by user. To enable this add css resize property to
element style. Possible values

e horizontal

e vertical

e both

Resize events:
onresize - element is resized
onresizeend - element was resized

Drag and drop

To enable drag and drop add CSS draggable property to element style. Possible values:
o false
e true
e auto

Drag events:

ondragstart - start drag
ondragend - end drag
ondragenter - executed on target
ondragleave - executed on target
ondrop - executed on drop target

Sortable containers

Special predefined .sortable class turns block element into items container/list where items can
be reordered by mouse or moved between two .soirtable containers.

© 2023 delphihtmlcomponents.com

Search and Table of Contents 47

31 Search and Table of Contents

To search for all occurrences of text in THtDocument use

function CreateSearchResult (const s: hstring; AllWords: boolean = true): hstring;

To create table of contents use

function CreateTableofContents: hstring;

© 2023 delphihtmlcomponents.com

48 HTML Library

32 Printing

From HtPanel: call
procedure Print(PrintDialog: TPrintDialog = nil; const PrintScale: single = 1);

From document: create another document, pass print canvas class to constructor and call Print.

Example:
PrintDoc := THtDocument.Create (Doc.CanvasClass.PrintCanvasClass);
try

PrintDoc.OnGetUrl := Doc.OnGetUrl;

PrintDoc.OnGetImage := Doc.OnGetImage;

PrintDoc.CurrentFile := Doc.CurrentFile;

PrintDoc.Parse (Doc.OuterHTML) ;
PrintDoc.GeneratePagesForPrint;
PrintDoc.Surface.Print (PrintDialog) ;
finally
PrintDoc.Free
end;

HTML Report Library has ready to use print preview window for VCL and FMX in
htPreviewFrame and fmx.htPreviewFrame units.
To open print preview call

procedure ShowHtPrintPreview (ADocument: THtDocument; const AStyles: string = '';
const ACaption: string = 'Print Preview'; AWidth: integer = 1200; AHeight: integ

procedure ShowHtPrintPreview (const AReport: hstring; const AStyles: string = '';
const ACaption: string = 'Print Preview'; AWidth: integer = 1200; AHeight: integ

© 2023 delphihtmlcomponents.com

PDF export 49

33 PDF export

THtDocument has two class methods for PDF export:

class function HTMLtoPDF (const AHTML: hstring; const AStyles: hstring = ''): TBytes;
class procedure HTMLtoPDFFile (const AHTML, FileName: string);

If you need to explicitly set some document properties, use the following code:

D := THtDocument.Create (HtDefaultCanvasClass.PrintCanvasClass); // or HtFMXDefaultCa.
try
D.Parse (AHTML) ;
D.GeneratePagesForPrint;
D.Surface.SavetoPDF (FileName) ;
finally
D.Free
end;

There are several PDF export implementations included:
Direct export for all platforms

Add htoffice to uses list (requires Office library).
Windows

Using SynPDF library: add htsynpdf unit to uses list.

Using SKIA: add htcanvasSkia to uses list and call

THtPagedExporter.RegisterExporter ('PDF', THtSkiaPDFExport);
0OSX

Set THtCanvasOSX as FMX default canvas class or pass it to document constructor in code
above.

Android

Set THtCanvasAndroid as default canvas class or pass it to document constructor in code
above.

i0S

Set THtCanvasiOS as default canvas class or pass it to document constructor in code above.

© 2023 delphihtmlcomponents.com

50

HTML Library

© 2023 delphihtmlcomponents.com

SVG export 51

34 SVG export

Normal or paged document can be exported into SVG using THtSVGCanvas from htcanvas
unit.

Draw or print using this canvas and get SVG from Document.Surface.Pages[index]
(THtPageSVG).

© 2023 delphihtmlcomponents.com

52

HTML Library

35

SVG creation

Library contains helper class for creating SVG paths from code (htcanvas unit):

THtSVGWriter = class (TFastString)

class function StrokeStyle (AColor: cardinal; const AWidth: single;
AStyle: THtPenStyle; const DashArray: TSingleArray = nil): string;
class function StrokeStyleCSS(AColor: cardinal; const AWidth: single;

AStyle: THtPenStyle; const DashArray: TSingleArray = nil): string;

// Add command

function Com (ACommand: hchar): THtSVGWriter;

// Path Move to point

function Move (const X, Y: single): THtSVGWriter;

// Path Move to relative point

function MoveRel (const dx, dy: single): THtSVGWriter;

// Path Arc with radius rx, ry from Angle to Angle + sweep

function Arc(const Rx, Ry, Angle: single; large, sweep: integer;
const X, Y: single): THtSVGWriter;

// Path Line to point

function LineTo(const X, Y: single): THtSVGWriter;

// Path Line relatively from current position

function LineRel (const dx, dy: single): THtSVGWriter;

// Draw line

function Line(const x1, yl, x2, y2: single; Stroke: Cardinal;
const StrokeWidth: single = 0): THtSVGWriter;

function F(const Value: single): THtSVGWriter;

// Path vertical line

function V(const Value: single): THtSVGWriter;

// Path relative vertical line

function VRel (const Delta: single): THtSVGWriter;

// Path horizontal line

function h(const Value: single): THtSVGWriter;

// Path relative horizontal line

function HRel (const Delta: single): THtSVGWriter;

function FS(const Value: single): THtSVGWriter;

// Add string

function s (const Value: string): THtSVGWriter;

// Add color

function Color (AColor: Cardinal): THtSVGWriter;

function Stroke (const APen: THtPen): THtSVGWriter;

function Stroke (AColor: Cardinal; const AWidth: single = 1)

THtSVGWriter;

// Draw path

function Path (const APath: string; Fill, Stroke: Cardinal;
const StrokeWidth: single = 0): THtSVGWriter;

// Begin path

function BeginPath (Fill, Stroke: Cardinal; const StrokeWidth: single

const Style: string = ''; CrispEdges: boolean = false;
const Attr: string = ''): THtSVGWriter;

// End path

function EndPath: THtSVGWriter;

// Path Z command (close figure)

function 7Z: THtSVGWriter;

// Draw text

© 2023 delphihtmlcomponents.com

SVG creation 53

function Text (const X, Y: single; const Anchor, Value: hstring;
const Style: string = ''; const Transform: string = '';
const Attrs: string = ''): THtSVGWriter;
// Draw circle
function Circle(const CX, CY, R: single; Fill, Stroke: Cardinal;
const StrokeWidth: single = 0): THtSVGWriter;
function Ellipse(const CX, CY, RX, RY: single; Fill, Stroke: Cardinal;
const StrokeWidth: single = 0): THtSVGWriter;
// Draw rectangle
function Rect (const X, Y, W, H: single; Fill, Stroke: Cardinal;
const StrokeWidth: single = 0; const Style: string = '';
const RX: single = 0; const RY: single = 0): THtSVGWriter;
function StrokePath (const Path: THtPath; const Pen: THtPen): THtSVGWriter;
property Empty: boolean read GetEmpty;
end;

© 2023 delphihtmlcomponents.com

54

HTML Library

36

Clipboard

htplatform unit contains platform neutral THtClipboardClass with the following methods

THtClipboard = class

public
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class

end;

procedure SetHTML (const AHTML, AText, ASourceFile: hstring);

function
function
function
function
function
function
function

procedure SetlImage (const AImage:

function
function
function
function
function
function

HasHTML: boolean;
GetHTML: hstring;
HasText: boolean;
GetText: hstring;
HasImage: boolean;
GetBitmap: THtBytes;
GetImage: THtBytes;

HasRTF: boolean;
GetRTF: hstring;
HasMathML: boolean;
GetMathML: hstring;
HasEMF: boolean;
GetEMF: THtBytes;

THtImage) ;

© 2023 delphihtmlcomponents.com

	Table of Contents
	Units
	Classes
	Custom element classes
	Styles
	Quirks mode
	Controls
	HtPanel
	VirtualTrees

	CSS properties and classes
	Listing element properties

	Unicode
	Images
	Canvases
	Navigation
	JQuery and XPath
	DOM
	Events
	Scripts
	HTML and Plain text
	Formatted HTML
	Incorrect markup

	XML and JSON
	HTML encode
	Hyphenation
	Delphi controls
	Fonts and FontAwesome
	Hints
	Notifications
	Colors and themes
	Highlighted text
	Document bounds
	Inputs and forms
	Scale and DPI
	Selection
	Resize and drag
	Sortable containers

	Search and Table of Contents
	Printing
	PDF export
	SVG export
	SVG creation
	Clipboard

