
© 2023 delphihtmlcomponents.com

HTML Editor Library

3Contents

3

© 2023 delphihtmlcomponents.com

Table of Contents

Foreword 0

Part I Introduction

 5

1 Getting Started ... 5

Part II Using HTML Editor

 6

1 Loading HTML into editor ... 6

Importing from other formats .. 6

2 Saving modified HTML .. 6

Export to PDF ... 7

Export to image .. 7

Export to plain text ... 8

3 Editor events .. 8

4 Editor commands .. 9

5 Spellchecking .. 10

6 Word prediction ... 10

7 Context toolbar .. 11

Selection toolbar ... 11

8 Enabling unicode for non-unicode Delphi .. 11

9 Adding elements and HTML blocks .. 11

10 Adding images ... 12

11 Working with lists .. 13

12 Working with images ... 13

13 Working with selection .. 14

14 Caret moving commands .. 14

15 Modifing text style .. 15

16 Keyboard shortcuts ... 15

17 Autoreplace .. 17

18 Text distortion and caret misplacement ... 17

19 Search and replace .. 17

20 Printing and print preview ... 18

21 Undo and redo ... 19

22 Pasting from clipboard .. 19

23 Working with tables ... 20

24 Change tracking ... 21

25 Creating table of contents ... 21

26 Header, Footer, Footnotes ... 22

27 VCL/FMX controls .. 23

HTML Editor Library4

© 2023 delphihtmlcomponents.com

Index 0

Introduction 5

© 2023 delphihtmlcomponents.com

1 Introduction

1.1 Getting Started

To start using the editor simply drop THtmlEditor or TDBHtmlEditor component on a form.

This will add htmledit unit for VCL or fmx.fhtmledit into uses list.

Editor document (of THtDocument type) can be accessed using Doc or Document properties.

Some editor methods/events use DOM element classes which are located in the following

units:

THtDocument - htmldraw / fmx.fhtmldraw

TElement -- htmldraw / fmx.fhtmldraw

THtmlStyledNode - htmlcss

THtNode - htmlpars

THtmlEditor is THtPanel descendant and can be used for displaying HTML too. Set Readonly to

true and torn off Editor.Options.eoCaretVisible option.

HTML Editor Library6

© 2023 delphihtmlcomponents.com

2 Using HTML Editor

2.1 Loading HTML into editor

To load new document into the editor assign Editor.HTML.Text property or use one of HTML:

TStringList methods: LoadfromFile, LoadfromStream, etc.

Also Editor has the following methods:

procedure LoadFromFile(const FileName: string) - Load document from file or http

url depending on FileName prefix.

procedure LoadFromURL(const AURL: string) - load from web
procedure LoadFromString(const s: hstring; AEncoding: THtmlEncoding =

heDefault; ACodePage: integer = 0) - load from string using specified encoding and

code page.
procedure LoadfromResource(const AResourceName: string; AEncoding:

THtmlEncoding) - load from application resource.

2.1.1 Importing from other formats

Using htrtf unit RTF and DOCX files can be converted to HTML and loaded into Editor.

Both TRTFParser and TDOCXConverter has two class methods:

 class function ConvertFile(const FileName: string; PrepareImage:
TRTFPrepareImageEvent = nil): string;
 class function ConvertStream(const Stream: TStream): string;

2.2 Saving modified HTML

To get modified HTML use Editor.Document.OuterHTML property.

Also Editor has the following methods for saving modified HTML:

 procedure SavetoFile(const FileName: string) - save to file using default encoding (Editor.Encoding)

THtDocument (Editor.Document) has the following methods:

 procedure SaveToFileUTF8(const FileName: string)
 - save to file using UTF8 encoding.
 procedure SavetoFileUnicode(const FileName: string)
 - save to file using UTF16 encoding
 procedure SavetoFile(const FileName: string; AEncoding: THtmlEncoding = heUTF8)

Using HTML Editor 7

© 2023 delphihtmlcomponents.com

 - save to file using specified encoding
 procedure SavetoLocalFile(const FileName: string; AEncoding: THtmlEncoding = heUTF8)
 - save document and its external content (stylesheets, images) into local files. External links changed to corresponding local files.
 procedure SavetoStream(const AStream: TStream; AEncoding: THtmlEncoding = heUTF8)
 - save to stream using specified encoding.

2.2.1 Export to PDF

PDF export is available on all platforms, but on Windows it requires Skia or free SynPDF

library. Please download this library, add its path into IDE library path list, uncomment

{$DEFINE SYNPDF} in htmlinc.inc and add htsynpdf unit into uses list.

To export into PDF without creating THtDocument use the following class methods of

THtDocument:

class function HTMLtoPDF(const AHTML: hstring; const AStyles: hstring =
''): TBytes;
class procedure HTMLtoPDFFile(const AHTML, FileName: string);

Normal THtDocument created for displaying cannot be used for PDF export. Create separate

THtDocument using CanvasClass.PrintCanvasClass, prepare paged layout and then use

Surface.G.SavetoPDFFile/SavetoPDFStream methods.

Example:

var D: THtDocument;
begin
 {$IFDEF FMX}
 D := THtDocument.Create(HtFMXDefaultCanvasClass.PrintCanvasClass);
 {$ELSE}
 D := THtDocument.Create(HtDefaultCanvasClass.PrintCanvasClass);
 {$ENDIF}
 try
 D.Parse(AHTML);
 D.GeneratePagesForPrint;
 D.Surface.G.SavetoPDF(FileName);
 finally
 D.Free
 end;

2.2.2 Export to image

HTML document can be rendered to bitmap or any other canvas. Example:

var D: THtDocument;
begin
 D := THtDocument.Create;
 try
 D.Parse(AHTML);

HTML Editor Library8

© 2023 delphihtmlcomponents.com

 D.Draw(Bitmap.Canvas, Rect(0, 0, Bitmap.Width, Bitmap.Height));
 finally
 D.Free
 end;
end;

2.2.3 Export to plain text

To get plain text of any DOM element or whole document use TElement.InnerText function.

F.e.

 s := Editor.Document.InnerText

2.3 Editor events

property OnCaretMoved: TNotifyEvent - Occurs when editor caret is moved into new

position. Use Current property to get a current element and Caret.CurrentChar to get index

of char at caret.

property OnSpellCheck: TSpellCheckEvent - Use this event for live spellchecking.

Editor.SpellChecking should be set to true.

property OnWordCorrection: TWordCorrectionEvent - Use this event for live word

correction (while typing)

property OnChange: TNotifyEvent - Occurs when the text for the editor may have

changed.

property AfterChange: TNotifyEvent - Occurs after changes

property AfterLoad: TNotifyEvent - Occurs when new document is loaded into the editor.

property AfterSave: TNotifyEvent - Occurs when document is saved into a file.

property OnAfterAction: TEditorActionEvent - Fired after any editor action is executed

property OnPrepareClipboardText: THtPrepareClipboardEvent - Use this action for

additional preprocessing of pasted HTML

property OnPrepareClipboardImage: THtPrepareClipboardImageEvent - Use this action

for additional preprocessing of pasted image data

property OnPrepareClipboardImageEx: THtPrepareClipboardImageExEvent - Use this

action for replacing default processing of pasted image data

property OnURLDetected: TElementNotifyEvent - Use this event to set additional

attributes of created <a> element

property OnCreateSelectionToolbar: TNotifyEvent - Use this event to customize

selection toolbar. When event is set, toolbar is not created by Editor.

Any control can subscribe to Editor.OnCaretMoving event by implementing IHtEditNotify interface

 IHtEditNotify = interface
 ['{A48D7182-F878-4F89-963F-C1CB5E64D18A}']

Using HTML Editor 9

© 2023 delphihtmlcomponents.com

 procedure OnCaretMoved(Sender: THtmlEditor);
 end;

and calling the following methods

 procedure Subscribe(Component: TComponent);
 procedure Unsubscribe(Component: TComponent);

2.4 Editor commands

All basic commands are accessible via actions. Place an ActionList on the form and use the New

standard action command to add actions from the HtmlEdit group.

The available pre-defined actions are:

 THtActionNew - new document

 THtFileOpen,- open file.

 THtFileSaveAs,- save file as.

 THtActionCopy - copy to clipboard

 THtActionPaste -paste from clipboard.

 THtActionPasteImage - paste image from clipboard.

 THtActionUndo - Undo.

 THtActionFontBold - set font bold.

 THtActionFontItalic - set font italic.

 THtActionFontUnderline - set font underline.

 THtActionFontStrikeout - set font strikeout.

 THtActionSubscript - subscript.

 THtActionSuperscript - superscript.

 THtActionAlignLeft - set paragraph alignment to left.

 THtActionAlignRight - set paragraph alignment to right.

 THtActionAlignCenter - set paragraph alignment to center.

 THtActionUnorderedList - convert selection to unordered list.

 THtActionOrderedList - - convert selection to ordered list.

 THtActionIncreaseIndent - increase block or list indent.

 THtActionDecreaseIndent - decrease block or list indent.

 THtActionAddUrl - convert selection to URL (link).

 THtActionSetHeader- convert current block to header (header level are defined by

ActionComponent tag).

 THtActionMarkdownHighlight - perform Markdown conversion on selection

 THtActionPascalHighlight - highlight selection as Pascal code

 THtActionHTMLHighlight - highlight selection as HTML code

To control font name and size use THtFontCombo and THtFontSizeCombo components. Just

place them on toolbar and set Editor property if there is more than one THtmlEditor

component on form.

HTML Editor Library10

© 2023 delphihtmlcomponents.com

2.5 Spellchecking

You can enable/disable live spellchecking and autocorrection using the Spellchecking and

WordCorrection properties.

Windows spellchecker

Add htspellwin to uses list.

Addict

To use Addict library enable $DEFINE ADDICT in htmlinc.inc before installing the package.

Add TAddictSpell component on the form and set THtmlEditor.AddictSpell property.

To start spellchecking add htAddict unit and call HtAddictCheckEditor(E,
TCheckType.ctAll, AddictSpell1) method.

Hunspell

Add hthubspell unit and use THtNHunSpellChecker class.

DevExpress

Add htdxspell unit and use TdxSpellCheckerHtmlEditorAdapter class.

Other spellcheckers

To use another spellchecking library write handlers for the OnSpellCheck and

OnWordCorrection events.

2.6 Word prediction

To enable word predition add hteditcore and htpredict to uses list and create global predictor
instance using the following code:

 GlobalWordPredictor := THtWordPredictor.Create;

Predictor can be trained by parsing plain text:

 GlobalWordPredictor.Parse(Text).;

After parsing, prepared data can be saved to file

GlobalWordPredictor.SavetoFile('predict.dat');

Using HTML Editor 11

© 2023 delphihtmlcomponents.com

To load prepared data use

 GlobalWordPredictor.LoadfromFile('predict.dat');

When typing, use Tab key to move to next word (Wanttabs should be set to true).

2.7 Context toolbar

Context toolbar is located at bottom of editor window. Context toolbar actions are similar to

Selection toolbar actions and are located in hteditcontext unit.

To define custom action set use property OnCreateContextToolbar: TNotifyEvent.
F.e.

THtEditContextPanel(ContextToolbar).Add(THtEditContexBold).Add(THtEditConte
xtItalic).Add(THtEditContextUnderline));

Context toolbar can be enabled/disabled by setting Editor.Options.eoContextToolbar property

2.7.1 Selection toolbar

Selection toolbar is located on a popup panel activated when uses select text block. Selection

toolbar actions are located in hteditcontext unit.

To define custom action set use property OnCreateSelectionToolbar: TNotifyEvent.
F.e.

THtEditContextPanel(SelectionToolbar).Add(THtEditContexBold).Add(THtEditCon
textItalic).Add(THtEditContextUnderline));

To hide selection toolbar call Editor.FinalizeEditing.

Selection toolbar can be enabled/disabled by setting Editor.Options.eoSelectionToolbar

property

2.8 Enabling unicode for non-unicode Delphi

To use Unicode in old Delphi you should have TntUnicode library installed.

Open htmlinc.inc file, uncomment $WIDESTRINGS define and recompile library package.

2.9 Adding elements and HTML blocks

There are functions and procedures to add various types of objects into the current document.

HTML Editor Library12

© 2023 delphihtmlcomponents.com

procedure AddChar(Key: char);

Add one char at caret position.

procedure AddString(const Str: hstring);

Add string at caret position.

procedure AddHTMLAtCursor(const HTML: hstring);

Add HTML at caret position. If HTML contains block elements current block element will be

split.

function AddPara: TElement;

Add paragraph at caret position.

function AddHR: TElement;

Add horizontal divider at caret position.

function AddLineBreak(AddAfter: TElement=nil): TElement;

Add line break at cursor or after AddAfter element.

function AddImageAtCursor(const ImageData: TBytes; Url: string=''): TImageElement;

Add embedded image at caret position.

function AddImageAtCursor(const Url: string; AWidth: integer=0; AHeight: integer=0; const

Align: string=''): TImageElement;

Add image and set its alignment (left/right)

2.10 Adding images

To add image to document use

function AddImageAtCursor(const Url: string; AWidth: integer=0; AHeight: integer=0; const

Align: string=''): TImageElement;

To set image alignment use Align parameter - set it to 'right' or 'left'.

To embed image to document use

Using HTML Editor 13

© 2023 delphihtmlcomponents.com

function AddImageAtCursor(const ImageData: TBytes; Url: string=''): TImageElement;

2.11 Working with lists

procedure SetListStyle(const ListStyle: string);

Convert the current block to a list. Set ListStyle to ul for unordered list or ol for ordered list.

procedure UnListSelection(const NewTag: string='p');

Convert the current list to paragraph.

procedure IncreaseIdent;

Increase the indent of the current list item (create sublist)

procedure DecreaseIdent;

Decrease the indent of the current list item or remove the list style.

2.12 Working with images

To enable image moving and resizing add the following code into Editor.Styles

img, svg {draggable: true; resize: both }

Following Editor,Options are related to images:

eoEmbedDroppedImages - add dropped images in inline format,

eoEmbedPastedImages - add pasted images in inline format,

eoProportionalImageResize - enable/disable image distortion

Following properties affect image loading mode:

BackgroundImageLoading - load images in a separate thread

LazyImageLoading - load only visible images

WebLoading - enable web (http) images

For custom image loading code use
 property OnGetImage: TGetImageEvent;

HTML Editor Library14

© 2023 delphihtmlcomponents.com

Other events related to images:

 property OnAfterImageLoaded: TAfterImageLoaded - called after image is loaded

 property OnImageLoadFailed: TAfterImageLoaded - called when image loading was failed

2.13 Working with selection

procedure SelectWordAtCursor;

Select word at caret position.

procedure DeleteSelection(DeleteEmptyElements: boolean=true);

Delete selection. DeleteEmptyElements=true means that empty block or inline element in

selection will be deleted.

procedure TagSelection(const Tag: string; attributes: string='');

Wrap selected elements by tag. Additional attributes could be added to tag.

procedure UntagSelection(const Tag: string; constattributes: string='');

Remove parent tag from selected elements.

procedure Current.SelectPara;

Select paragraph at caret position.

2.14 Caret moving commands

There is a comprehensive suite of methods for managing caret movement and positioning:

 procedure CaretStart;

 procedure CaretEnd;

 procedure CaretLineStart;

 procedure CaretLineEnd;

 function CaretNext: boolean;

 function CaretPrevious: boolean;

 procedure CaretNextWord;

 procedure CaretPreviousWord;

 procedure CaretNextCell;

 procedure CaretPreviousCell;

Using HTML Editor 15

© 2023 delphihtmlcomponents.com

 procedure CaretFirstCell;

 procedure CaretLastCell;

 function CaretDown: boolean;

 function CaretUp: boolean;

 procedure CaretPageUp;

 procedure CaretPageDown;

 procedure CarettoStartof(E: TElement);

 procedure CarettoEndof(E: TElement);

 procedure CaretParaStart;

 procedure CaretParaEnd;

2.15 Modifing text style

Many text style functions are accessible via the THtmlEditor.TextStyle class.

It has the following properties

 property Bold: boolean;

 property Italic: boolean;

 property Underline: boolean;

 property StrikeOut: boolean;

 property Subscript: boolean;

 property SuperScript: boolean;

 property FontName: string;

 property FontSize: integer;

 property Color: cardinal;

 property BGColor: cardinal;

 property TextTransform: TCSSTextTransform;

 property Alignment: THAlignment;

Changing these properties will change style of current selection, or current word at cursor (if

nothing is selected) or style of subsequent text entered by user.

2.16 Keyboard shortcuts

Ctrl+Left/Right

 Next/Previous word

Ctrl+Up/Down

 Paragraph start/End or Next/Previous

Ctrl+Home/End

 Start/End of document

Ctrl+Alt+1..5

HTML Editor Library16

© 2023 delphihtmlcomponents.com

 Header 1..5

Ctrl+1, 2, 5

 Line spacing 1, 2, 1.5

Ctrl+Shift+A

 Upper case

Ctrl+Shift+K

 Lower case

Ctrl+B

 Bold

Ctrl+I

 Italic

Ctrl+U

 Underline

Ctrl+E

 Center alignment

Ctrl+L

 Left alignment

Ctrl+R

 Right alignment

Ctrl+C/Ctrl+Ins

 Copy to clipboard

Ctrl+V/Shift+Ins

 Paste from clipboard

Ctrl+Z

 Undo

Ctrl+M

 Increase indent

Ctrl+Shift+M

 Decrease indent

Ctrl+Alt+C

 ©

Ctrl+Alt+R

 ®

Ctrl+Alt+T

Ctrl+Alt+-

Ctrl+-

Ctrl+Shift++

 Superscript

Ctrl++

Using HTML Editor 17

© 2023 delphihtmlcomponents.com

 Subscript

Shift+Enter

 Soft line-break

2.17 Autoreplace

Following sequences will be replaced

 (c) - ©

 (tm) -

 (r) - ®

 -

 * at line start - unordered list

 1. at line start- orderd list

 -- -

 ---+Enter - horizontal divider

2.18 Text distortion and caret misplacement

Navigation: Using HTML Editor >

Text distortion and caret misplacement
GDI+ (default VCL canvas) has some issues with text displaying and measurement. In most

cases it is better to use Direct2D canvas. To enable it simply add htcanvasdx to uses list (VCL).

FMX default canvas also has problems with precise text measurement. You can use native

canvases by assigning HtFMXDefaultCanvasClass global variable (htcanvas unit).

OSX: THtCanvasOSX (fmx.htcanvasosx unit)

Android: THtCanvasAndroid (fmx.htcanvasandroid)

iOS: THtCavasiOS (fmx.htCanvasiOS)

2.19 Search and replace

VCL version has the following build-in dialogs:

 procedure FindDialog(ADialog: TFindDialog = nil);
 procedure ReplaceDialog(ADialog: TReplaceDialog = nil);

Also Editor has build-in method for creating "Search page". Use

THtmlEditor.CreateSearchResult(const s: hstring): hstring function to get search result and

HtPanel to display it.

Recommended CSS is:

6

HTML Editor Library18

© 2023 delphihtmlcomponents.com

body {
 background: white ;
 Color: #202020;
 font-size: 10pt;
 font-face: Calibri;
 padding: 5 5;
}
a {color: #202020; text-decoration: none;}
a:hover {text-decoration: underline}
h3 {text-align: center; color: #aaa; margin: 10 0 5 0; border-bottom: solid
#aaa 1px}
span {color: #A09000; font-weight: bold}

Navigation code:

procedure TForm1.SearchPanelUrlClick(Sender: TElement);
var EX: TElement;
 n, k: integer;
begin
 if not TrystrtoInt(Sender['pos'], n) then
 exit;
 if not TrystrtoInt(Sender['charpos'], k) then
 k := 1;
 EX := Editor.GetElementbyAbsolutePosition(n, true);
 if Assigned(EX) then
 begin
 Editor.Doc.Selection.StartElement := EX;
 Editor.Doc.Selection.EndElement := EX;
 Editor.Doc.Selection.StartPos := k;
 Editor.Doc.Selection.EndPos := k + length(SearchEdit.Text);
 Editor.ScrollSelectionIntoView;
 Editor.Repaint;
 end;
end;

2.20 Printing and print preview

To display print preview window add HtPreviewFrame for VCL or fmx.HtPreviewFrame for FMX

unit into uses list and call

ShowHtPrintPreview(Editor.Doc, Editor.Styles.Text)

(Requires HTML Report Library).

Using HTML Editor 19

© 2023 delphihtmlcomponents.com

2.21 Undo and redo

function CanUndo: boolean - Returns true if undo history is not empty

procedure Undo - Undo last operation

function CanRedo: boolean - Returns true if redo history is not empty

procedure Redo - Redo last operation
procedure DocChanged(const TopElement: TElement = nil; AOperation:

THtEditorOperation = eopOther; ClearRedo: boolean = true) - Use this method to

notify the editor of any changes in document.

2.22 Pasting from clipboard

Clipboard content can be preprocessed before passing to editor. For HTML content use the

following event:

property OnPrepareClipboardText: THtPrepareClipboardEvent

 THtPrepareClipboardEvent = procedure(var ClipboardHTML: hstring) of object;

To prepare image content use the following events:

property OnPrepareClipboardImage: THtPrepareClipboardImageEvent
property OnPrepareClipboardImageEx: THtPrepareClipboardImageExEvent

In OnPrepareClipboardImageEx event Handled parameter can be used for
skipping default processing.

Following Editor.Options are related to clipboard:

eoEmbedPastedImages - embed pasted images in <img src="data.." format.
eoEmbedPastedStyles - add styles from pasted HTML to document styles
eoClearPastedFormatting - remove inline styles and classes from pasted
elements, also remove span elements without attributes
eoDisableBlockJoinOnPaste - do not join pasted blocks with current
eoPasteTextBlockAsPara - convert text blocks divided by blank lines to
para.

Editor methods for pasting:

PasteFromClipboard - paste any content from clipboard (image, RTF, HTML,
text, etc).
PasteTextFromClipboard - paste plain text only.

HTML Editor Library20

© 2023 delphihtmlcomponents.com

2.23 Working with tables

To add table at caret position use

function AddTable(Cols, Rows: integer; const Attributes, CellContent:
hstring; HeaderRows: integer = 0): TElement;

Parameters:

Cols: Column count

Rows: Row count

Attributes: Additional table attributes

CellContent: Default content for the cells (for example)

Table can be adjusted from code using the following methods of TTableElement:

procedure InsertRow(NewRowIndex: integer; const CellContent: string) - Insert

new row
function InsertCol(NewColIndex: integer; const CellContent: string; const

AWidth: string = '100'): TElement; - Insert column

procedure DeleteRow(RowIndex: integer) - Delete row

procedure DeleteCol(ColIndex: integer) - Delete column

procedure SetColumnStyle(ColumnIndex: integer; const AStyle: string) - Set

style for column

procedure MoveColumn(Index, NewIndex: integer) - Exchange columns

Tables can have add col/row marks when mouse is between columns.rows. To enable it set

Editor.Options.eoAddColMarks/eoAddRowMarks.

To enable column resizing add the following code into Editor.Styles:
th, td {resize: horizontal}

To enable row resizing add the following code into Editor.Styles:
tr {resize: vertical}

To merge table cells use the following Editor methods:

 procedure MergeSelectedCells;

 procedure UnMergeSelectedCell;

To delete row from table call

 procedure DeleteTableRow(const Table: TTableElement; Row: integer);

Following Editor action are related to tables:

Using HTML Editor 21

© 2023 delphihtmlcomponents.com

·THtTableAddRow

·THtTableDeleteRow

·THtTableInsertCol

·THtTableDeleteCol

·THtTableIncColspan

·THtTableDecColspan

2.24 Change tracking

To enable changer tracking set Editor.TrackChanges property to true.

Editor ha the following methods related to change tracking:

 function ChangesReport: hstring - Generate tracked changes report

 procedure ApplyAllChanges - Apply all changes made in TrackChanges mode

2.25 Creating table of contents

To create table of contents use Editor.CreateTableofContents method.

Following styles are recommended for displaying TOC:

body {background: white;
 font-family: Verdana; font-size: 9pt; color: #305090; padding: 3px 3px;}
h1,h2,h3,h4,h5 {white-space: nowrap; cursor: pointer; }
h1:hover, h2:hover, h3:hover, h4:hover, h5:hover {text-decoration:
underline}
h1 {font-size: 14pt}
h2 {margin-left: 10px; font-size: 12pt}
h3 {margin-left: 20px; font-size: 10pt}
h4 {margin-left: 30px; font-size: 9pt}
h5 {margin-left: 40px; font-size: 8pt}

To navigate editor to selected item use the following code:

procedure TForm1.TOCPanelElementClick(Sender: TElement);
var s: string;
 EX: TElement;
begin
 s := Sender['content'];
 if s <> '' then
 begin
 EX := Editor.Doc;
 while Assigned(EX) do
 begin
 if (EX.Tag = Sender.Tag) and (EX.InnerText = s) then
 begin
 Editor.ScrollIntoTop(EX);

HTML Editor Library22

© 2023 delphihtmlcomponents.com

 exit
 end;
 EX := EX.NextElement;
 end;
 end;
end;

2.26 Header, Footer, Footnotes

Page header and footer can be defined using any block element and CSS style position:

running(heading/footer). Example:

<style>
footer {position: running(footer); text-align: center; border-top: solid
#aaa 1px; text-align: center; font-size: 9pt; left: 5%; width: 90%; height:
36px }
.pagecount:before {content: counter(pagecount)}
</style>

<footer>Page /</footer>

This sample also contains page number and page count which are defined using content

property.

Footer size is calculated automatically from page footer block height.

Document can contain several headers/footers. CSS property page is used for selecting on

which page header/footer will be displayed.

page can have following values:

last: only last lage

last-: all pages before last

odd: odd pages

even: even pages

<number> (1,2,..): only <number> page

<number+> all pages after <number>

To set page margins use CSS style:

@page {margin: 0px 0px 0px 0px}

Library supports document section element doc-section which allows to set footer and

headers for document part (similarly to OOXML) .

Attrributes:

size: page size

margins: page margins

Using HTML Editor 23

© 2023 delphihtmlcomponents.com

section can have several child header or footer elements with following attributes

ref ID of header or footer

style optional style to define page, f.e. page:1 or page:odd

2.27 VCL/FMX controls

Any control class used in HTML should be registered first using

RegisterClass or RegisterClasses, f.e.

 RegisterClass(TCalendar);

Sample of control inside HTML:

<control type="TCalendar" name="Calendar1" >
</control>

There are two ways of defining control properties. First, using

attributes:

<control type="TCalendar" rotationangle="10">
</control>

Second - using DFM object notation:

<control type="TCalendar" name="Calendar1">
object Calendar1: TCalendar
 Date = 44113.000000000000000000
end
</control>

	Table of Contents
	Introduction
	Getting Started

	Using HTML Editor
	Loading HTML into editor
	Importing from other formats

	Saving modified HTML
	Export to PDF
	Export to image
	Export to plain text

	Editor events
	Editor commands
	Spellchecking
	Word prediction
	Context toolbar
	Selection toolbar

	Enabling unicode for non-unicode Delphi
	Adding elements and HTML blocks
	Adding images
	Working with lists
	Working with images
	Working with selection
	Caret moving commands
	Modifing text style
	Keyboard shortcuts
	Autoreplace
	Text distortion and caret misplacement
	Search and replace
	Printing and print preview
	Undo and redo
	Pasting from clipboard
	Working with tables
	Change tracking
	Creating table of contents
	Header, Footer, Footnotes
	VCL/FMX controls

